S71JL128HC0/128HB0/064HB0/ 064HA0/064H80

Stacked Multi-Chip Product (MCP) Flash Memory and pSRAM CMOS 3.0 Volt-only, Simultaneous Operation Flash Memories and Static RAM/Pseudo-static RAM

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

MCP Features

- Operating Voltage Range of 2.7 to 3.3 V
- High Performance
 - Access time as fast as 55 ns
- Packages
 - 73-ball FBGA-8 x 11.6 mm
 - 88-ball FBGA—8 x 11.6 mm
- Operating Temperatures
 - Wireless: -25°C to +85°CIndustrial: -40°C to +85°C

GENERAL DESCRIPTION

The S71JLxxxH Series is a product line of stacked Multi-Chip Products (MCP) and consists of

- One or more S29JL064H Flash devices
- SRAM or pSRAM options
 - 8Mb x 8/x 16 SRAM
 - 16Mb x 16-only SRAM
 - pSRAM x 16 only: 8Mb pSRAM 16Mb pSRAM 32Mb pSRAM

64Mb pSRAM

The products covered by this document are listed below. For details about their specifications, please refer to the individual constituent data sheets for further details.

МСР	Number of S29JL064H	Total Flash Density	SRAM/pSRAM Density
S71JL064H80	1	64Mb	8Mb
S71JL064HA0	1	64Mb	16Mb
S71JL064HB0	1	64Mb	32Mb
S71JL128HB0	2	128Mb	32Mb
S71JL128HC0	2	128Mb	64Mb

Notes:

- 1. This MCP is only guaranteed to operate @ 2.7 3.3 V regardless of component operating ranges.
- 2. BYTE# operation is only supported on the S71JL064H80xx0x.

Product Selector Guide

Device-Model #	SRAM/pSRAM Density	SRAM/pSRAM Type	Supplier	Flash Access Time (ns)	RAM Access Time (ns)	Packages
S71JL064H80Bxx01	8Mb	SRAM - x8/x16	Supplier 1	70	70	FLB073
S71JL064H80Bxx02	8Mb	SRAM - x8/x16	Supplier 1	85	85	FLB073
S71JL064H80Bxx10	8Mb	pSRAM - x16	Supplier 2	55	55	FLJ073
S71JL064H80Bxx11	8Mb	pSRAM - x16	Supplier 2	70	70	FLJ073
S71JL064H80Bxx12	8Mb	pSRAM - x16	Supplier 2	85	85	FLJ073
S71JL064HA0Bxx01	16Mb	SRAM - x16	Supplier 1	70	70	FLB073
S71JL064HA0Bxx02	16Mb	SRAM - x16	Supplier 1	85	85	FLB073
S71JL064HA0Bxx10	16Mb	pSRAM - x16	Supplier 2	55	55	FLJ073
S71JL064HA0Bxx11	16Mb	pSRAM - x16	Supplier 2	70	70	FLJ073
S71JL064HA0Bxx12	16Mb	pSRAM - x16	Supplier 2	85	85	FLJ073
S71JL064HA0Bxx62	16Mb	pSRAM - x16	Supplier 4	70	70	FLJ073
S71JL128HB0Bxx01	32Mb	pSRAM - x16	Supplier 3	70	70	FTA073
S71JL128HB0Bxx02	32Mb	pSRAM - x16	Supplier 3	85	85	FTA073
S71JL128HC0Bxx01	64Mb	pSRAM - x16	Supplier 3	70	70	FTA088
S71JL128HC0Bxx02	64Mb	pSRAM - x16	Supplier 3	85	85	FTA088

TABLE OF CONTENTS

S7IJL128HC0/128HB0/064HB0/064HA0/064H80	Requirements for Reading Array Data	
Distinctive Characteristics	Writing Commands/Command Sequences	
General Description	Accelerated Program Operation	
•	Autoselect Functions	44
Product Selector Guide2	Simultaneous Read/Write Operations with Zero Latency	
Block Diagrams 6	Standby Mode	44
MCP Block Diagram of S7IJL064H80, Model Numbers 0I/026	Automatic Sleep Mode	
MCP Block Diagram of S7IJL064H80, Model Numbers I0/II/I26	RESET#: Hardware Reset Pin	
MCP Block Diagram of S7IJL064HA0, Model Numbers 0I/027	Output Disable Mode	
MCP Block Diagram of S7IJL064HA0, Model Numbers I0/II/I2/617	Table 2. S29JL064H Sector Architecture	
MCP Block Diagram of S7IJL064HB0, Model Numbers 00/01/028	Table 3. Bank Address Table 4. SecSi™ Sector Addresses	
MCP Block Diagram of S7IJLI28HB0, Model Numbers 00/01/029	Autoselect Mode	
MCP Block Diagram of S7IJLI28HC0, Model Numbers 00/01/02 10	Sector/Sector Block Protection and Unprotection	
Connection DiagramsII	Table 5. S71JLxxxHxx_00 Boot Sector/Sector Block Addresses	
Connection Diagram of S7IJL064H80, Model Numbers 01/02II	Protection/Unprotection	50
Special Package Handling Instructions12	Write Protect (WP#)	
Pin Description12	Table 6. WP#/ACC Modes	
Logic Symbol	Temporary Sector Unprotect	
Connection Diagram of S7IJL064H80, Model Numbers 10/11/12 14	Figure 1. Temporary Sector Unprotect Operation	
Pin DescriptionI5	Figure 2. In-System Sector Protect/Unprotect Algorithms	
Logic Symbol15	SecSi™ (Secured Silicon) Sector Flash Memory Region	
Connection Diagram of S7IJL064HA0, Model Numbers 01/02	Factory Locked: SecSi Sector Programmed and Protected At the	
Pin DescriptionI7	Factory	
Logic Symbol18	Customer Lockable: SecSi Sector NOT Programmed or Protecte	
Connection Diagram of S7IJL064HA0, Model Numbers 10/11/12/61 19	the Factory	
Pin Description20	Figure 3. SecSi Sector Protect Verify	
Logic Symbol20	Hardware Data Protection	
Connection Diagram of S7IJL064HB0, Model Numbers 00/01/02 21	Low VCC Write Inhibit	
Pin Description22	Write Pulse "Glitch" Protection	
Logic Symbol	Logical Inhibit	
Connection Diagram of S7IJLI28HB0, Model Numbers 00/01/0223	Power-Up Write Inhibit	
Pin Description24	Common Flash Memory Interface (CFI)	
Logic Symbol	Table 7. CFI Query Identification String	
Connection Diagram of S7IJL128HC0, Model Numbers 00/01/0225	Table 8. System Interface String	
Special Package Handling Instructions25	Table 9. Device Geometry Definition	
Pin Description26	Table 10. Primary Vendor-Specific Extended Query	
Logic Symbol	Command Definitions	. 59
Look-ahead Connection Diagram27	Reading Array Data	59
Ordering Information	Reset Command	
Physical Dimensions	Autoselect Command Sequence	
FLB07333	Enter SecSi™ Sector/Exit SecSi Sector Command Sequence	60
FLJ073	Byte/Word Program Command Sequence	
FTA07335	Unlock Bypass Command Sequence	
FTA088	Figure 4. Program Operation	
F1A000	Chip Erase Command Sequence	
C2011 044L1	Sector Erase Command Sequence	
S29JL064H	Figure 5. Erase Operation	
General Description 38	Erase Suspend/Erase Resume Commands	
Simultaneous Read/Write Operations with Zero Latency38	Table 11. S29JL064H Command Definitions	65
S7IJLxxxHxx_00 Features38	Write Operation Status	66
Product Selector Guide40	DQ7: Data# Polling	
	Figure 6. Data# Polling Algorithm	. 68
Block Diagram	RY/BY#: Ready/Busy#	68
Pin Description4l	DQ6: Toggle Bit I	69
Logic Symbol	Figure 7. Toggle Bit Algorithm	
Device Bus Operations	DQ2: Toggle Bit II	
Table 1. S71JLxxxHxx_00 Device Bus Operations	Reading Toggle Bits DQ6/DQ2	
Word/Byte Configuration43	DQ5: Exceeded Timing Limits	7I

DQ3: Sector Erase Timer	71	Figure 28. Timing Waveform of Read Cycle(1) (address controlled
Table 12. Write Operation Status		CD#1=OE#= V_{IL} , CS2=WE#= V_{IH} , UB# and/or LB#= V_{IL}) 9
Absolute Maximum Ratings	73	Figure 29. Timing Waveform of Read Cycle(2) (WE#=V _{IH} , if BYTE
Figure 8. Maximum Negative Overshoot Waveform	73	is low, ignore UB#/LB# timing)
Figure 9. Maximum Positive Overshoot Waveform	73	Figure 30. Timing Waveform of Write Cycle(1) (WE# controlled, i
Operating Ranges	73	BYTE# is low, ignore UB#/LB# timing)
Wireless (W) Devices	73	Figure 31. Timing Waveform of Write Cycle(2) (CE1# controlled, i BYTE# is low, ignore UB#/LB# timing)
Industrial (I) Devices		Figure 32. Timing Waveform of Write Cycle(3) (UB#, LB#
V _{CC} Supply Voltages		controlled, BYTE# must be high) 9
DC Characteristics		Data Retention Waveforms9
Table 13. CMOS Compatible		Figure 33. CE1# Controlled 9
Zero-Power Flash		Figure 34. CS2 Controlled
Figure 10. I_{CC1} Current vs. Time (Showing Active and Au		
Sleep Currents)		I6 Mb SRAM (supplier I)
Figure 11. Typical ICC1 vs. Frequency		io i io orași i (suppliei i)
Test Conditions	76	Functional Description
Figure 12. Test Setup	76	Absolute Maximum Ratings 9
Table 14. Test Specifications		DC Characteristics 9
Switching Waveforms		Recommended DC Operating Conditions (Note I)
Table 15. Key To Switching Waveforms		Capacitance (f=IMHz, T _A =25°C)9
Figure 13. Input Waveforms and Measurement Levels		DC Operating Characteristics9
AC Characteristics	77	AC Characteristics9
Read-Only Operations	77	
Figure 14. Read Operation Timings	77	Read/Write Charcteristics (V _{CC} =2.7-3.3V)9
Hardware Reset (RESET#)	78	Data Retention Characteristics9
Figure 15. Reset Timings	78	Timing Diagrams9
Word/Byte Configuration (BYTE#)	78	Figure 35. Timing Waveform of Read Cycle(1) (address controlled
Figure 16. BYTE# Timings for Read Operations		CD#1=OE#= V_{IL} , CS2=WE#= V_{IH} , UB# and/or LB#= V_{IL}) 9 Figure 36. Timing Waveform of Read Cycle(2) (WE#= V_{IH}) 9
Figure 17. BYTE# Timings for Write Operations		Figure 37. Timing Waveform of Write Cycle(2) (WE# = v_{IH}) 9 Figure 37. Timing Waveform of Write Cycle(1) (WE# controlled).
Erase and Program Operations	80	100
Figure 18. Program Operation Timings		Figure 38. Timing Waveform of Write Cycle(2) (CS# controlled) .
Figure 19. Accelerated Program Timing Diagram		100
Figure 20. Chip/Sector Erase Operation Timings		Figure 39. Timing Waveform of Write Cycle(3) (UB#, LB#
Figure 21. Back-to-back Read/Write Cycle Timings		controlled)
Figure 22. Data# Polling Timings (During Embedded Alg	orithms) .	Figure 40. Data Retention Waveform
83 Figure 23. Toggle Bit Timings (During Embedded Algorit	hmc) 02	
Figure 24. DQ2 vs. DQ6		8 Mb pSRAM (supplier 2)
Temporary Sector Unprotect		,
Figure 25. Temporary Sector Unprotect Timing Diagram		Features
Figure 26. Sector/Sector Block Protect and Unprotect Tir		General Description
Diagram		Block Diagram 10
Alternate CE# Controlled Erase and Program Operations		Figure 41. Functional Block Diagram
Figure 27. Alternate CE# Controlled Write (Erase/Progra		Table 18. Functional Description
Operation Timings		Absolute Maximum Ratings (See Note) 10
Erase And Programming Performance	88	DC Characteristics
Latchup Characteristics		Operating Characteristics (Over Specified Temperature Range)10
		AC Characteristics
9 Mh SDAM (supplier I)		Table 19. Timing Test Conditions
8 Mb SRAM (supplier I)		Table 20. Timing rest conditions
Functional Description	89	Timing Diagrams00
Table 16. Word Mode		Figure 42. Timing of Read Cycle (CE1# = OE# = V _{II} , WE# = CE2
Table 17. Byte Mode	89	= V _{IH})
Absolute Maximum Ratings		Figure 43. Timing Waveform of Read Cycle (WE# = V_{IH}) 10
DC Characteristics		Figure 44. Timing Waveform of Write Cycle (WE# Control) 10
Recommended DC Operating Conditions		Figure 45. Timing Waveform of Write Cycle (CE1# Control) 10
Capacitance (f=IMHz, T _A =25°C)		· · · · · · · · · · · · · · · · · · ·
DC and Operating Characteristics		I6 Mb pSRAM (supplier 2)
AC Characteristics		
		Features 10
Read/Write Characteristics (V _{CC} =2.7-3.3V)		General Description 10
Data Retention Characteristics		Block Diagram II
Timing Diagrams	93	Figure 46. Functional Block Diagram

Advance Information

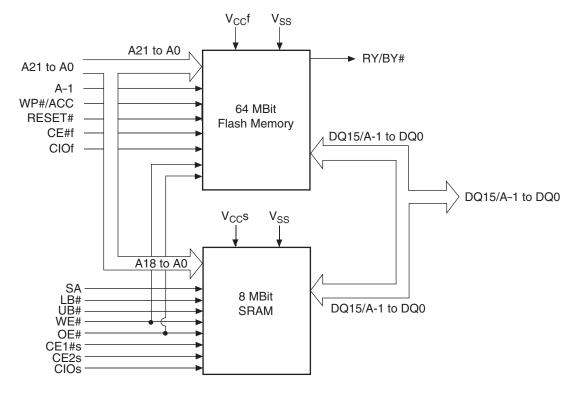
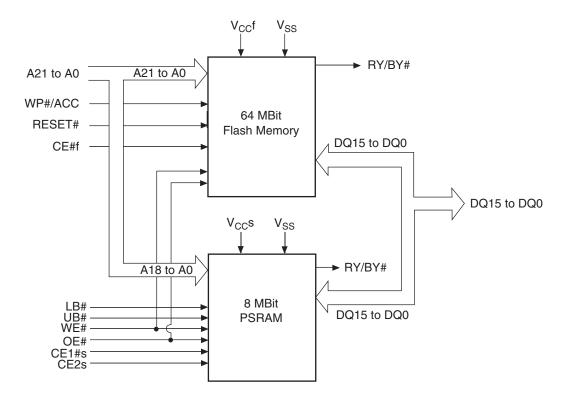
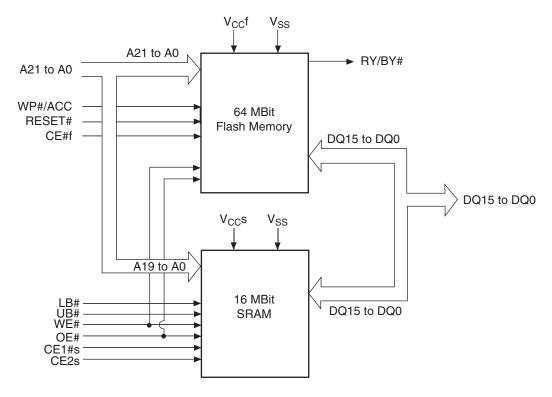


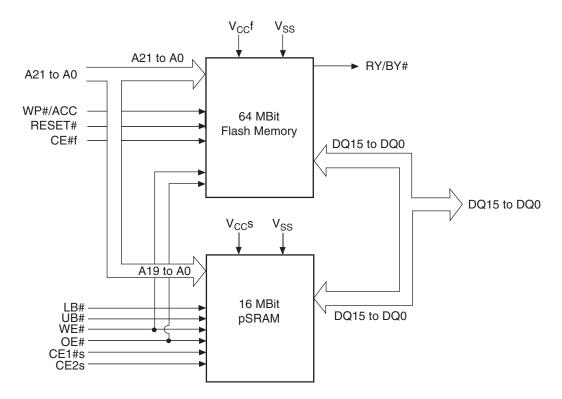
Table 21. Functional Description110	Absolute Maxumum Ratings
Absolute Maximum Ratings (See Note) III	DC Characteristics
DC CharacteristicsIII	Table 27. DC Recommended Operating Conditions ($T_A = -40^{\circ}C$ to
Operating Characteristics (Over Specified Temperature Range) III	85°C)
AC CharacteristicsII2	Table 28. DC Characteristics ($T_A = -40^{\circ}\text{C}$ to 85°C, VDD = 2.6 to
Timing Test ConditionsII2	3.3V)
	Table 29. Capacitance (T _A = 25°C, f = 1 MHz)
Timings	AC Characteristics
Timings	Table 30. AC Characteristics and Operating Conditions ($T_A = -40^{\circ}$ C
Figure 47. Timing of Read Cycle (CE1# = OE# = V _{IL} , WE# = CE2 = V _{IH})	to 85°C, V _{DD} = 2.6 to 3.3V)
Figure 48. Timing Waveform of Read Cycle (WE# = V _{IH}) 113	Table 31. AC Test Conditions
Figure 49. Timing Waveform of Write Cycle (WE# = VIH) 113	Timing Diagrams
Figure 50. Timing Waveform of Write Cycle (CE1# Control, CE2 =	Figure 61. Read Cycle 12
High)	Figure 62. Page Read Cycle (8 words access) 12
11917	Figure 63. Write Cycle 1 (WE# controlled) 12
I6 Mb pSRAM (supplier 4)	Figure 64. Write Cycle 2 (CE# controlled) 13
10 Pib pSKAP (supplier 4)	Figure 65. Deep Power-down Timing 13
Features	Figure 66. Power-on Timing 13
DescriptionII5	Figure 67. Read Address Skew Provisions
Pin DescriptionII5	Figure 68. Write Address Skew Provisions
Operation Mode	64 Mb pSRAM (supplier 3)
Absolute Maxumum Ratings (see Note) II6	
DC Characteristics Il6	Features
Table 22. DC Recommended Operating Conditions116	Description
Table 23. DC Characteristics ($T_A = -25^{\circ}\text{C}$ to 85°C , VDD = 2.6 to	Pin Description
3.3V)117	Operation Mode
AC Characteristics II7	Absolute Maxumum Ratings
Table 24. AC Characteristics and Operating Conditions ($T_A = -25$ °C	DC Characteristics
to 85°C, V _{DD} = 2.6 to 3.3V)117	Table 32. DC Recommended Operating Conditions ($T_A = -25$ °C to
Table 25. AC Test Conditions118	85°C)
Figure 51. AC Test Loads 118	Table 33. DC Characteristics ($T_A = -25^{\circ}\text{C}$ to 85°C, VDD = 2.6 to
Figure 52. State Diagram	3.3V)
Table 26. Standby Mode Characteristics	Table 34. Capacitance ($T_A = 25^{\circ}\text{C}$, $f = 1 \text{ MHz}$)
Timing DiagramsII9	AC Characteristics
Figure 53. Read Cycle 1—Addressed Controlled 119	Table 35. AC Characteristics and Operating Conditions ($T_A = -25^{\circ}$ C
Figure 54. Read Cycle 2—CS1# Controlled 120	to 85°C, V _{DD} = 2.6 to 3.3V)
Figure 55. Write Cycle 1—WE# Controlled	Table 36. AC Test Conditions
Figure 56. Write Cycle 2—CS1# Controlled	Timing Diagrams
Figure 57. Write Cycle3—UB#, LB# Controlled	Figure 69. Read Cycle
Figure 58. Deep Power-down Mode	Figure 70. Page Read Cycle (8 words access)
Figure 59. Power-up Mode	Figure 71. Write Cycle 1 (WE# controlled)
Figure 60. Abnormal Timing	Figure 72. Write Cycle 2 (CE# controlled)
22 ML CD AM (C	Figure 73. Deep Power-down Timing
32 Mb pSRAM (Supplier 3)	Figure 74. Power-on Timing
Features	Figure 75. Read Address Skew Provisions
	Figure 76. Write Address Skew Provisions
Description	
Pin Description 123	Revision Summary
Operation Mode 124	ite vision gamma,



Block Diagrams

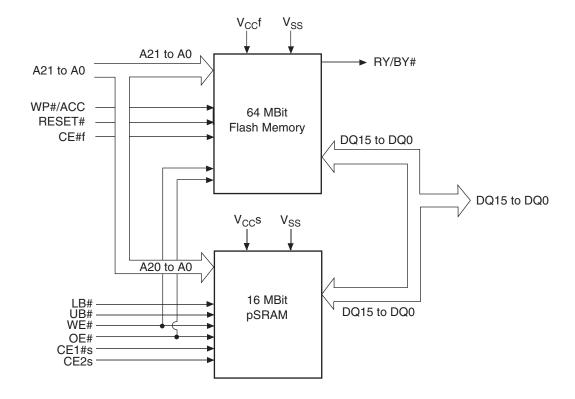
MCP Block Diagram of S7IJL064H80, Model Numbers 01/02


MCP Block Diagram of \$7IJL064H80, Model Numbers 10/II/I2


S7IJLxxxHxx_00Al February 25, 2004

MCP Block Diagram of S7IJL064HA0, Model Numbers 01/02

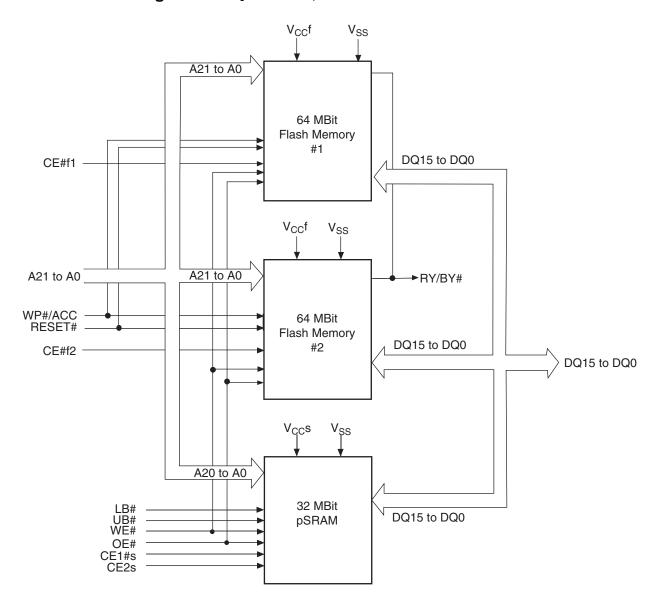
MCP Block Diagram of \$7IJL064HA0, Model Numbers 10/11/12/62



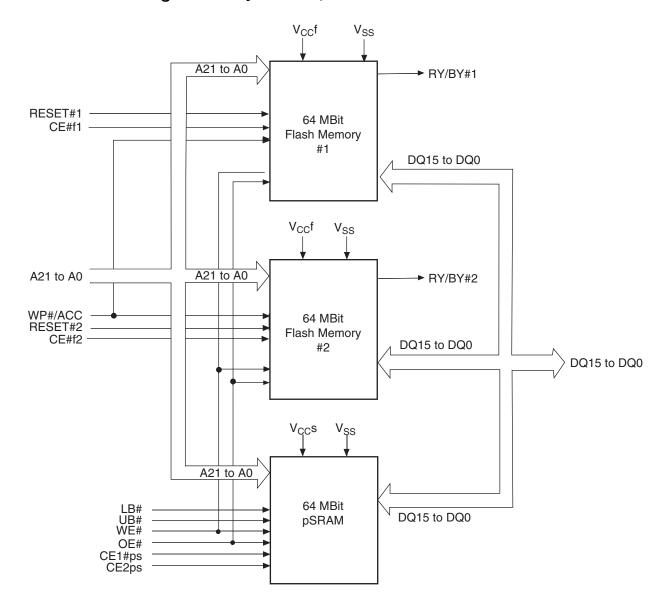
February 25, 2004 S7IJLxxxHxx_00Al 7

8

MCP Block Diagram of \$7IJL064HB0, Model Numbers 00/01/02

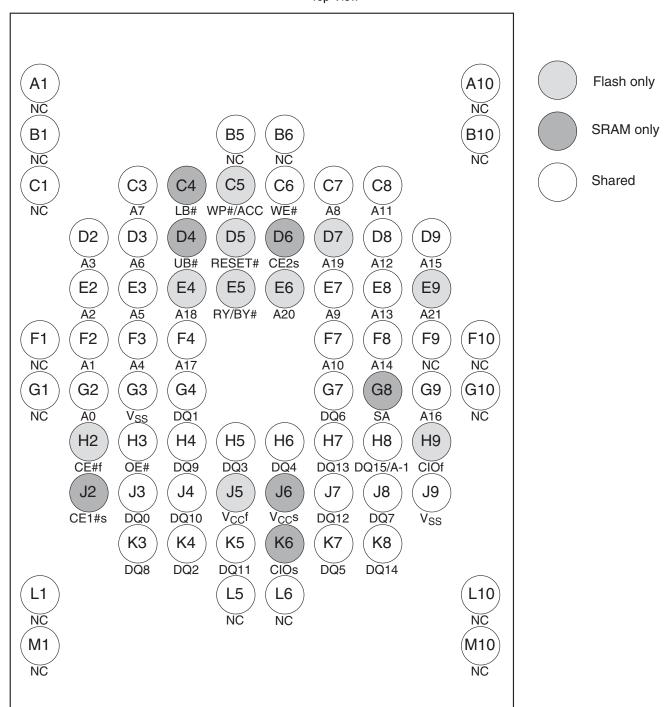


S7IJLxxxHxx_00Al February 25, 2004


9

MCP Block Diagram of S7IJL128HB0, Model Numbers 00/01/02

MCP Block Diagram of S7IJLI28HC0, Model Numbers 00/01/02

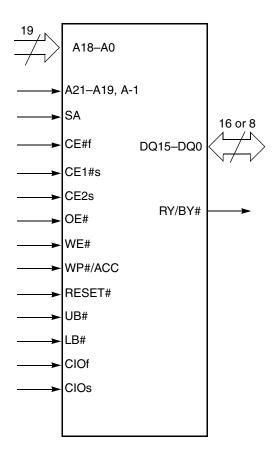

S7IJLxxxHxx_00Al February 25, 2004

Connection Diagrams

Connection Diagram of S7IJL064H80, Model Numbers 01/02

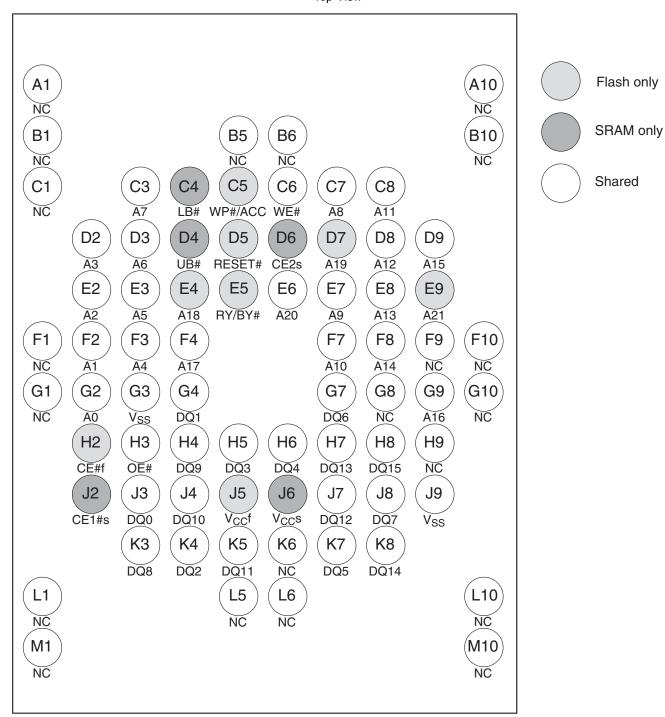
73-Ball FBGATop View

Special Package Handling Instructions


Special handling is required for Flash Memory products in molded packages (FBGA). The package and/or data integrity may be compromised if the package body is exposed to temperatures above 150°C for prolonged periods of time.

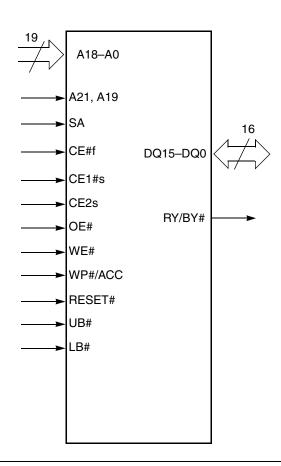
Pin Description

A18-A0	=	19 Address Inputs (Common)
A21-A19, A-1	=	4 Address Inputs (Flash)
SA	=	Highest Order Address Pin (SRAM) Byte mode
DQ15-DQ0	=	16 Data Inputs/Outputs (Common)
CE#f	=	Chip Enable (Flash)
CE#s	=	Chip Enable (SRAM)
OE#	=	Output Enable (Common)
WE#	=	Write Enable (Common)
RY/BY#	=	Ready/Busy Output
UB#	=	Upper Byte Control (SRAM)
LB#	=	Lower Byte Control (SRAM)
CIOf	=	I/O Configuration (Flash)
		$CIOf = V_{IH} = Word mode (x16),$
		$CIOf = V_{IL} = Byte mode (x8)$
CIOs	=	I/O Configuration (SRAM)
		CIOs = V_{IH} = Word mode (x16), CIOs = V_{II} = Byte mode (x8)
RESET#	=	Hardware Reset Pin, Active Low
WP#/ACC	=	Hardware Write Protect/Acceleration Pin (Flash)
V _{CC} f	=	Flash 3.0 volt-only single power supply (see Product
, CC₁	_	Selector Guide for speed options and voltage supply
		tolerances)
$V_{CC}s$	=	SRAM Power Supply
V _{SS}	=	Device Ground (Common)
NC	=	Pin Not Connected Internally


Logic Symbol

Connection Diagram of \$7IJL064H80, Model Numbers I0/II/I2

73-Ball FBGATop View

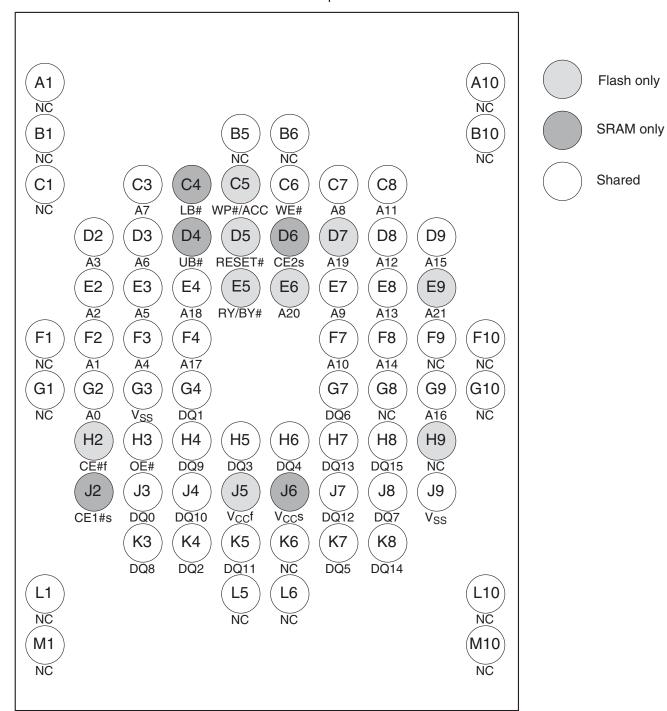

Special Package Handling Instructions

Special handling is required for Flash Memory products in molded packages (TSOP, BGA, PDIP, SSOP, PLCC). The package and/or data integrity may be compromised if the package body is exposed to temperatures above 150°C for prolonged periods of time.

Pin Description

A18-A0 19 Address Inputs (Common) A21-A19 2 Address Inputs (Flash) DQ15-DQ0 16 Data Inputs/Outputs (Common) = CE#f Chip Enable (Flash) CE1#s Chip Enable 1 (pSRAM) CE2s Chip Enable 2 (pSRAM) OE# Output Enable (Common) WE# Write Enable (Common) RY/BY# Ready/Busy Output UB# Upper Byte Control (pSRAM) = LB# Lower Byte Control (pSRAM) RESET# Hardware Reset Pin, Active Low = WP#/ACC = Hardware Write Protect/Acceleration Pin (Flash) Flash 3.0 volt-only single power supply (see Product $V_{CC}f$ Selector Guide for speed options and voltage supply tolerances) pSRAM Power Supply $V_{CC}s$ = V_{SS} Device Ground (Common) NC Pin Not Connected Internally

Logic Symbol



February 25, 2004 S7IJLxxxHxx_00AI

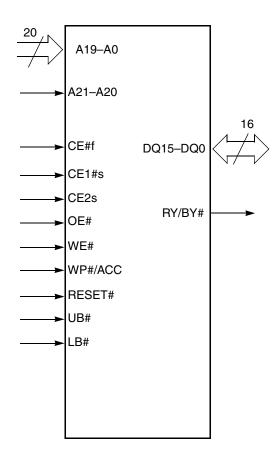
Connection Diagram of S7IJL064HA0, Model Numbers 01/02

73-Ball FBGATop View

Special Package Handling Instructions for FBGA Package

Special handling is required for Flash Memory products in FBGA packages.

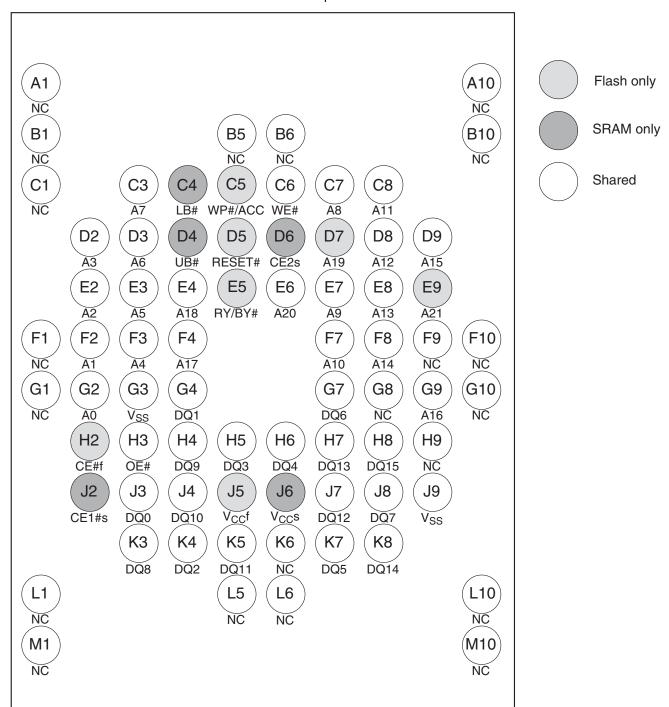
Flash memory devices in FBGA packages may be damaged if exposed to ultrasonic cleaning methods. The package and/or data integrity may be compromised if the package body is exposed to temperatures above 150° C for prolonged periods of time.


Pin Description

A19-A0	=	20 Address Inputs (Common)
A21-A20	=	2 Address Inputs (Flash)
DQ15-DQ0	=	16 Data Inputs/Outputs (Common)
CE#f	=	Chip Enable (Flash)
CE#s	=	Chip Enable (SRAM)
OE#	=	Output Enable (Common)
WE#	=	Write Enable (Common)
RY/BY#	=	Ready/Busy Output
UB#	=	Upper Byte Control (SRAM)
LB#	=	Lower Byte Control (SRAM)
RESET#	=	Hardware Reset Pin, Active Low
WP#/ACC	=	Hardware Write Protect/Acceleration Pin (Flash)
V _{CC} f	=	Flash 3.0 volt-only single power supply (see Product Selector Guide for speed options and voltage supply tolerances)
$V_{CC}s$	=	SRAM Power Supply
V_{SS}	=	Device Ground (Common)
NC	=	Pin Not Connected Internally

February 25, 2004 S7IJLxxxHxx_00Al

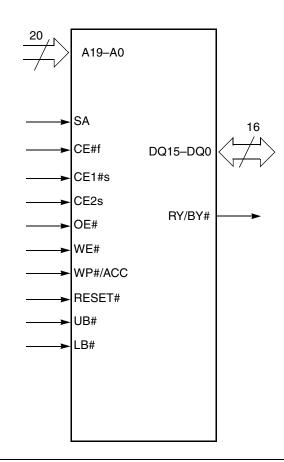
Logic Symbol



18

Connection Diagram of S7IJL064HA0, Model Numbers I0/II/I2/62

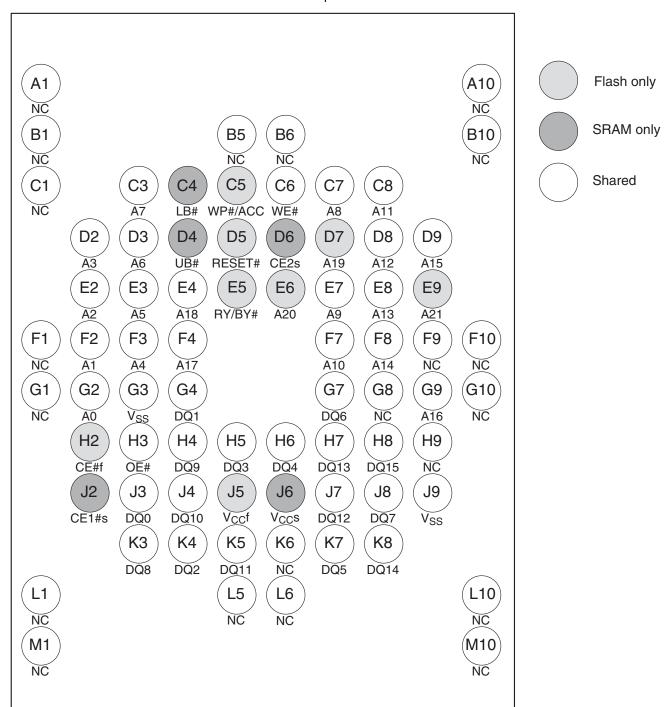
73-Ball FBGATop View


Special Package Handling Instructions

Special handling is required for Flash Memory products in molded packages (TSOP, BGA, PDIP, SSOP, PLCC). The package and/or data integrity may be compromised if the package body is exposed to temperatures above 150° C for prolonged periods of time.

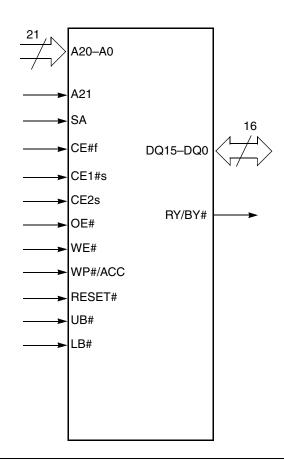
Pin Description

A19-A0 20 Address Inputs (Common) A21-A20 2 Address Inputs (Flash) DQ15-DQ0 16 Data Inputs/Outputs (Common) = CE#f Chip Enable (Flash) CE1#s Chip Enable 1 (pSRAM) CE2s Chip Enable 2 (pSRAM) OE# Output Enable (Common) WE# Write Enable (Common) RY/BY# Ready/Busy Output UB# Upper Byte Control (pSRAM) = LB# Lower Byte Control (pSRAM) RESET# Hardware Reset Pin, Active Low = WP#/ACC = Hardware Write Protect/Acceleration Pin (Flash) Flash 3.0 volt-only single power supply (see Product $V_{CC}f$ Selector Guide for speed options and voltage supply tolerances) pSRAM Power Supply $V_{CC}s$ = Device Ground (Common) V_{SS} NC Pin Not Connected Internally


Logic Symbol

Connection Diagram of S7IJL064HB0, Model Numbers 00/01/02

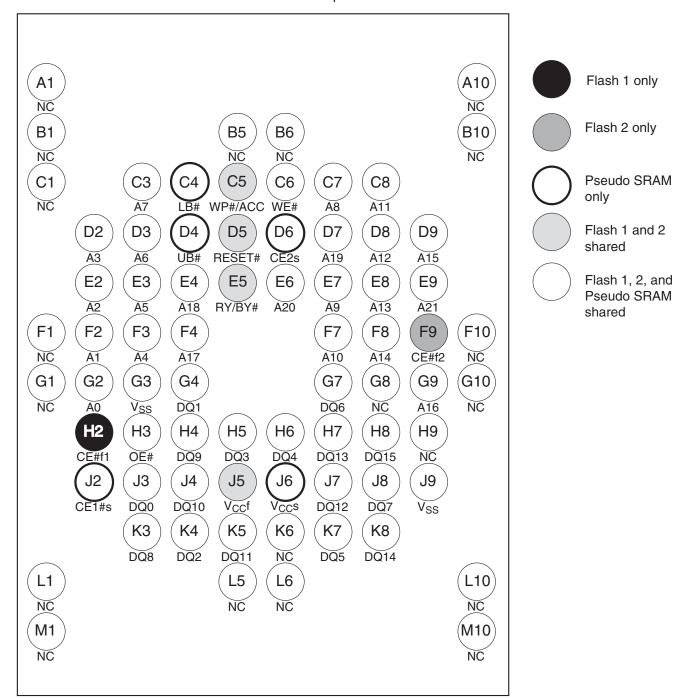
73-Ball FBGATop View


Special Package Handling Instructions

Special handling is required for Flash Memory products in molded packages (TSOP, BGA, PDIP, SSOP, PLCC). The package and/or data integrity may be compromised if the package body is exposed to temperatures above 150° C for prolonged periods of time.

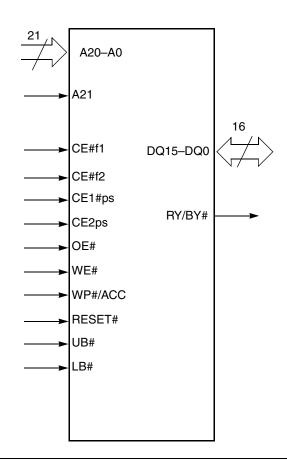
Pin Description

A20-A0 20 Address Inputs (Common) A21 1 Address Input (Flash) DQ15-DQ0 16 Data Inputs/Outputs (Common) = CE#f Chip Enable (Flash) CE1#s Chip Enable 1 (pSRAM) CE2s Chip Enable 2 (pSRAM) OE# Output Enable (Common) WE# Write Enable (Common) RY/BY# Ready/Busy Output UB# Upper Byte Control (pSRAM) = LB# Lower Byte Control (pSRAM) RESET# Hardware Reset Pin, Active Low = WP#/ACC = Hardware Write Protect/Acceleration Pin (Flash) Flash 3.0 volt-only single power supply (see Product $V_{CC}f$ Selector Guide for speed options and voltage supply tolerances) pSRAM Power Supply $V_{CC}s$ = V_{SS} Device Ground (Common) NC Pin Not Connected Internally


Logic Symbol

Connection Diagram of S7IJLI28HB0, Model Numbers 00/01/02

73-Ball FBGATop View


Special Package Handling Instructions

Special handling is required for Flash Memory products in molded packages (BGA). The package and/or data integrity may be compromised if the package body is exposed to temperatures above 150°C for prolonged periods of time.

Pin Description

A20-A0 21 Address Inputs (Common) A21 1 Address Input (Flash) DQ15-DQ0 16 Data Inputs/Outputs (Common) CE#f1 Chip Enable 1 (Flash 1) CE#f2 Chip Enable 2 (Flash 2) CE1#ps Chip Enable 1 (pSRAM) = CE2ps Chip Enable 2 (pSRAM) OE# Output Enable (Common) WE# Write Enable (Common) Ready/Busy Output RY/BY# UB# Upper Byte Control (pSRAM) LB# Lower Byte Control (pSRAM) RESET# Hardware Reset Pin, Active Low WP#/ACC Hardware Write Protect/Acceleration Pin (Flash) = Flash 3.0 volt-only single power supply (see Product $V_{CC}f$ = Selector Guide for speed options and voltage supply tolerances) pSRAM Power Supply $V_{CC}ps$ Device Ground (Common) V_{SS} = NC Pin Not Connected Internally

Logic Symbol

and 2

Connection Diagram of S7IJLI28HC0, Model Numbers 00/01/02

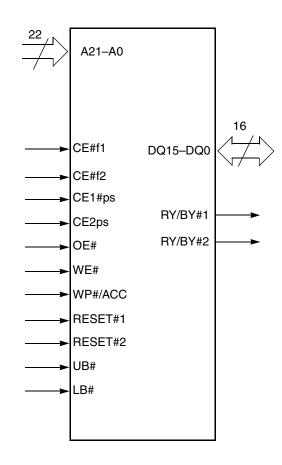
88-ball Fine-Pitch Ball Grid Array

(Top View, Balls Facing Down)

											1	
	(A1) NC	A2 NC							A9 NC	A10 NC		Shared Flash 1 and
		B2 NC	B3 VSS	B4 Ry/BY#2	B5 2 CE#f2	B6 NC	B7	B8 NC	B9 NC			Shared Flash 1 Only
		(C2)	(C3)	C4	C 5	(C6)	C7	(C8)	C9			Flash 2 Only
		NC	A7	LB#	WP#/Acc	WE#	A8	A11	NC			SRAM Only
		D2) A3	D3) A6	D4 UB#	D5 RESET#1	D6 CE2s	D7) A19	D8) A12	D9 A15			
		E2 A2	(E3) A5	E4) A18	E5 RY/BY#1	(E6) A20	(E7) A9	E8 A13	E9 A21			
		F2 A1	(F3) A4	(F4) A17	F5 NC	F6 NC	(F7) A10	(F8) A14	F9 NC			
		(G2) A0	G3 V _{SS}	G4 DQ1	G5 NC	G6 NC	G7 DQ6	G8 NC	G9 A16			
		H2 CE#f1	H3 OE#	H4 DQ9	H5) DQ3	H6 DQ4	H7) DQ13	H8) DQ15	H9 NC			
		D2 CE1#fs	J3 DQ0	J4 DQ10	J4 V _{CC} f	J4 V _{CC} s	J7 DQ12	J8 DQ7	J9 V _{SS}			
		K2 NC	K3 DQ8	K4 DQ2	(K5) DQ11	K6 NC	K7 DQ5	(K8) DQ14	K9 NC			
		L2 NC	L3 RESET#2	L4 V _{SS}	L5 V _{CC} f	L6 NC	L7 NC	L8 NC	L9 NC			
	M1) NC	M2 NC							M9 NC	M10 NC		
- 1												

Special Package Handling Instructions

Special handling is required for Flash Memory products in molded packages (TSOP, BGA, PLCC, PDIP, SSOP). The package and/or data integrity may be compromised if the package body is exposed to temperatures above 150°C for prolonged periods of time.


25 February 25, 2004 S7IJLxxxHxx_00AI

Pin Description

A21-A0 22 Address Inputs (Common) DQ15-DQ0 16 Data Inputs/Outputs (Common) = CE#f1 Chip Enable 1 (Flash 1) CE#f2 Chip Enable 2 (Flash 2) = CE1#ps Chip Enable 1 (pSRAM) CE2ps Chip Enable 2 (pSRAM) OE# Output Enable (Common) WE# Write Enable (Common) RY/BY#1 Ready/Busy Output (Flash 1) RY/BY#2 Ready/Busy Output (Flash 2) UB# Upper Byte Control (pSRAM) LB# Lower Byte Control (pSRAM) = RESET#1 Hardware Reset Pin, Active Low (Flash 1) = RESET#2 Hardware Reset Pin, Active Low (Flash 2) = Hardware Write Protect/Acceleration Pin (Flash) WP#/ACC = Flash 3.0 volt-only single power supply (see Product $V_{CC}f$ Selector Guide for speed options and voltage supply tolerances) $V_{CC}ps$ pSRAM Power Supply = Device Ground (Common) V_{SS} = NC Pin Not Connected Internally =

Logic Symbol

Look-ahead Connection Diagram

96-ball Fine-Pitch Ball Grid Array

(Top View, Balls Facing Down)

/ I
/ I

Legend:

ds = Data storage only f = Flash shared only f1 = 1st Flash only f2 = 2nd Flash only NC = Outrigger balls s = RAM shared s1 = 1st RAM only s2 = 2nd RAM only

Note: To provide customers with a migration path to higher densities and an option to stack more die in a package, FASL has prepared a standard pinout that supports

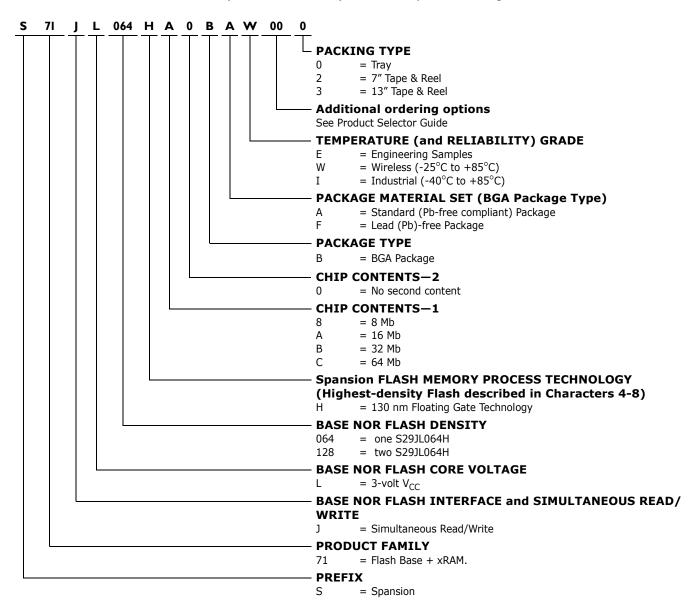
- NOR Flash and SRAM densities up to 4 Gigabits
- NOR Flash and pSRAM densities up to 4 Gigabits

February 25, 2004 S7IJLxxxHxx_00AI

■ NOR Flash and pSRAM and DATA STORAGE densities up to 4 Gigabits

The signal locations of the resultant MCP device are shown above. Note that for different densities, the actual package outline may vary. Any pinout in any MCP, however, will be a subset of the pinout above.

In some cases, there may be outrigger balls in locations outside the grid shown above. In such cases, the user is recommended to treat them as reserved and not connect them to any other signal.


For any further inquiries about the above look-ahead pinout, please refer to the application note on this subject or contact your sales office.

28

Ordering Information

The order number (Valid Combination) is formed by the following:

Valid Combinations

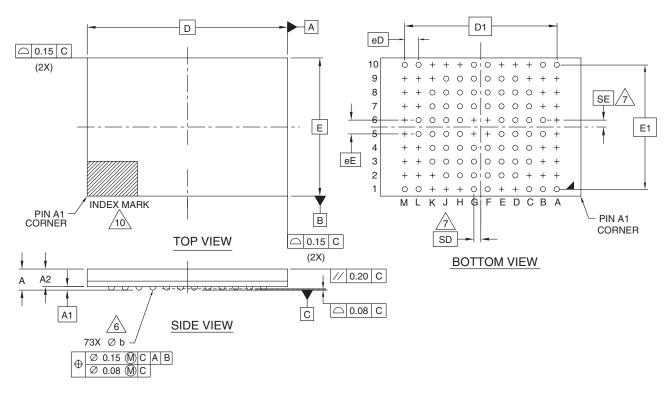
Valid Combinations list configurations planned to be supported in volume for this device. Consult the local sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Valid Combinations		Flash Access	(p)SRAM Access	Temperature	
Order Number	nber Package Marking		Time (ns)	Range	Supplier
S71JL064H80BAI01	71JL064H80BAI01	70	70	-40C to +85C	Supplier 1
S71JL064H80BAI02	71JL064H80BAI02	85	85	-40C to +85C	Supplier 1
S71JL064H80BAI10	71JL064H80BAI10	55	55	-40C to +85C	Supplier 2
S71JL064H80BAI11	71JL064H80BAI11	70	70	-40C to +85C	Supplier 2

February 25, 2004 S7IJLxxxHxx_00Al 29

Valid Combinations		Flash Access	(p)SRAM Access	Temperature	
Order Number	Package Marking	Time (ns)	Time (ns)	Range	Supplier
S71JL064H80BAI12	71JL064H80BAI12	85	85	-40C to +85C	Supplier 2
S71JL064H80BAW01	71JL064H80BAW01	70	70	-25C to +85C	Supplier 1
S71JL064H80BAW02	71JL064H80BAW02	85	85	-25C to +85C	Supplier 1
S71JL064H80BAW10	71JL064H80BAW10	55	55	-25C to +85C	Supplier 2
S71JL064H80BAW11	71JL064H80BAW11	70	70	-25C to +85C	Supplier 2
S71JL064H80BAW12	71JL064H80BAW12	85	85	-25C to +85C	Supplier 2
S71JL064H80BFI01	71JL064H80BFI01	70	70	-40C to +85C	Supplier 1
S71JL064H80BFI02	71JL064H80BFI02	85	85	-40C to +85C	Supplier 1
S71JL064H80BFI10	71JL064H80BFI10	55	55	-40C to +85C	Supplier 2
S71JL064H80BFI11	71JL064H80BFI11	70	70	-40C to +85C	Supplier 2
S71JL064H80BFI12	71JL064H80BFI12	85	85	-40C to +85C	Supplier 2
S71JL064H80BFW01	71JL064H80BFW01	70	70	-25C to +85C	Supplier 1
S71JL064H80BFW02	71JL064H80BFW02	85	85	-25C to +85C	Supplier 1
S71JL064H80BFW10	71JL064H80BFW10	55	55	-25C to +85C	Supplier 2
S71JL064H80BFW11	71JL064H80BFW11	70	70	-25C to +85C	Supplier 2
S71JL064H80BFW12	71JL064H80BFW12	85	85	-25C to +85C	Supplier 2
S71JL064HA0BAI01	71JL064HA0BAI01	70	70	-40C to +85C	Supplier 1
S71JL064HA0BAI02	71JL064HA0BAI02	85	85	-40C to +85C	Supplier 1
S71JL064HA0BAI10	71JL064HA0BAI10	55	55	-40C to +85C	Supplier 2
S71JL064HA0BAI11	71JL064HA0BAI11	70	70	-40C to +85C	Supplier 2
S71JL064HA0BAI12	71JL064HA0BAI12	85	85	-40C to +85C	Supplier 2
S71JL064HA0BAI62	71JL064HA0BAI62	70	70	-40C to +85C	Supplier 4
S71JL064HA0BAW01	71JL064HA0BAW01	70	70	-25C to +85C	Supplier 1
S71JL064HA0BAW02	71JL064HA0BAW02	85	85	-25C to +85C	Supplier 1
S71JL064HA0BAW10	71JL064HA0BAW10	55	55	-25C to +85C	Supplier 2
S71JL064HA0BAW11	71JL064HA0BAW11	70	70	-25C to +85C	Supplier 2
S71JL064HA0BAW12	71JL064HA0BAW12	85	85	-25C to +85C	Supplier 2
S71JL064HA0BAW62	71JL064HA0BAW62	70	70	-25C to +85C	Supplier 4
S71JL064HA0BFI01	71JL064HA0BFI01	70	70	-40C to +85C	Supplier 1
S71JL064HA0BFI02	71JL064HA0BFI02	85	85	-40C to +85C	Supplier 1
S71JL064HA0BFI10	71JL064HA0BFI10	55	55	-40C to +85C	Supplier 2
S71JL064HA0BFI11	71JL064HA0BFI11	70	70	-40C to +85C	Supplier 2
S71JL064HA0BFI12	71JL064HA0BFI12	85	85	-40C to +85C	Supplier 2
S71JL064HA0BFI62	71JL064HA0BFI62	70	70	-40C to +85C	Supplier 4

Valid Combinations		Flash Access	(p)SRAM Access	Temperature	
Order Number	Package Marking	Time (ns)	Time (ns)	Range	Supplier
S71JL064HA0BFW01	71JL064HA0BFW01	70	70	-25C to +85C	Supplier 1
S71JL064HA0BFW02	71JL064HA0BFW02	85	85	-25C to +85C	Supplier 1
S71JL064HA0BFW10	71JL064HA0BFW10	55	55	-25C to +85C	Supplier 2
S71JL064HA0BFW11	71JL064HA0BFW11	70	70	-25C to +85C	Supplier 2
S71JL064HA0BFW12	71JL064HA0BFW12	85	85	-25C to +85C	Supplier 2
S71JL064HA0BFW62	71JL064HA0BFW62	70	70	-25C to +85C	Supplier 4
S71JL064HB0BAI00	71JL064HB0BAI00	55	55	-40C to +85C	Supplier 3
S71JL064HB0BAI01	71JL064HB0BAI01	70	70	-40C to +85C	Supplier 3
S71JL064HB0BAI02	71JL064HB0BAI02	85	85	-40C to +85C	Supplier 3
S71JL064HB0BAW00	71JL064HB0BAW00	55	55	-25C to +85C	Supplier 3
S71JL064HB0BAW01	71JL064HB0BAW01	70	70	-25C to +85C	Supplier 3
S71JL064HB0BAW02	71JL064HB0BAW02	85	85	-25C to +85C	Supplier 3
S71JL064HB0BFI00	71JL064HB0BFI00	55	55	-40C to +85C	Supplier 3
S71JL064HB0BFI01	71JL064HB0BFI01	70	70	-40C to +85C	Supplier 3
S71JL064HB0BFI02	71JL064HB0BFI02	85	85	-40C to +85C	Supplier 3
S71JL064HB0BFW00	71JL064HB0BFW00	55	55	-25C to +85C	Supplier 3
S71JL064HB0BFW01	71JL064HB0BFW01	70	70	-25C to +85C	Supplier 3
S71JL064HB0BFW02	71JL064HB0BFW02	85	85	-25C to +85C	Supplier 3
S71JL128HB0BAI00	71JL128HB0BAI00	55	55	-40C to +85C	Supplier 3
S71JL128HB0BAI01	71JL128HB0BAI01	70	70	-40C to +85C	Supplier 3
S71JL128HB0BAI02	71JL128HB0BAI02	85	85	-40C to +85C	Supplier 3
S71JL128HB0BAW00	71JL128HB0BAW00	55	55	-25C to +85C	Supplier 3
S71JL128HB0BAW01	71JL128HB0BAW01	70	70	-25C to +85C	Supplier 3
S71JL128HB0BAW02	71JL128HB0BAW02	85	85	-25C to +85C	Supplier 3
S71JL128HB0BFI00	71JL128HB0BFI00	55	55	-40C to +85C	Supplier 3
S71JL128HB0BFI01	71JL128HB0BFI01	70	70	-40C to +85C	Supplier 3
S71JL128HB0BFI02	71JL128HB0BFI02	85	85	-40C to +85C	Supplier 3
S71JL128HB0BFW00	71JL128HB0BFW00	55	55	-25C to +85C	Supplier 3
S71JL128HB0BFW01	71JL128HB0BFW01	70	70	-25C to +85C	Supplier 3
S71JL128HB0BFW02	71JL128HB0BFW02	85	85	-25C to +85C	Supplier 3
S71JL128HC0BAI00	71JL128HC0BAI00	55	55	-40C to +85C	Supplier 3
S71JL128HC0BAI01	71JL128HC0BAI01	70	70	-40C to +85C	Supplier 3



Valid Con	Flash Access	(p)SRAM Access	Temperature		
Order Number	Package Marking	Time (ns)	Time (ns)	Range	Supplier
S71JL128HC0BAI02	71JL128HC0BAI02	85	85	-40C to +85C	Supplier 3
S71JL128HC0BAW00	71JL128HC0BAW00	55	55	-25C to +85C	Supplier 3
S71JL128HC0BAW01	71JL128HC0BAW01	70	70	-25C to +85C	Supplier 3
S71JL128HC0BAW02	71JL128HC0BAW02	85	85	-25C to +85C	Supplier 3
S71JL128HC0BFI00	71JL128HC0BFI00	55	55	-40C to +85C	Supplier 3
S71JL128HC0BFI01	71JL128HC0BFI01	70	70	-40C to +85C	Supplier 3
S71JL128HC0BFI02	71JL128HC0BFI02	85	85	-40C to +85C	Supplier 3
S71JL128HC0BFW00	71JL128HC0BFW00	55	55	-25C to +85C	Supplier 3
S71JL128HC0BFW01	71JL128HC0BFW01	70	70	-25C to +85C	Supplier 3
S71JL128HC0BFW02	71JL128HC0BFW02	85	85	-25C to +85C	Supplier 3

Physical Dimensions

FLB073

PACKAGE	FLB 073				
JEDEC	N/A			NOTE	
	11.60 mm x 8.00 mm PACKAGE			NOTE	
SYMBOL	MIN.	NOM.	MAX.		
Α			1.40	PROFILE]
A1	0.20			BALL HEIGHT	Ī
A2	0.95		1.13	BODY THICKNESS	1
D		11.60 BSC.		BODY SIZE	1
Е		8.00 BSC.		BODY SIZE	1
D1		8.80 BSC.		MATRIX FOOTPRINT	Ī
E1		7.20 BSC.		MATRIX FOOTPRINT	1
MD	12			MATRIX SIZE D DIRECTION	1
ME	10			MATRIX SIZE E DIRECTION	1
n	73			BALL COUNT	1
Øb	0.25	0.30 0.35		BALL DIAMETER	1
eЕ	0.80 BSC			BALL PITCH	1
eD	0.80 BSC			BALL PITCH	1
SD/SE	0.40 BSC			SOLDER BALL PLACEMENT	1
	A2,A3,A4,A5,A6,A7,A8,A9 B2,B3,B4,B7,B8,B9 C2,C9,C10,D1,D10,E1,E10 F5,F6,G5,G6,H1,H10 J1,J10,K1,K2, K9,K10,L2,L3,L4,L7,L8,L9 M2,M3,M4,M5,M6,M7,M8,M9			DEPOPULATED SOLDER BALL	

NOTES:

- DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS.
- 3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.
- 4. e REPRESENTS THE SOLDER BALL GRID PITCH.
- SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.

SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.

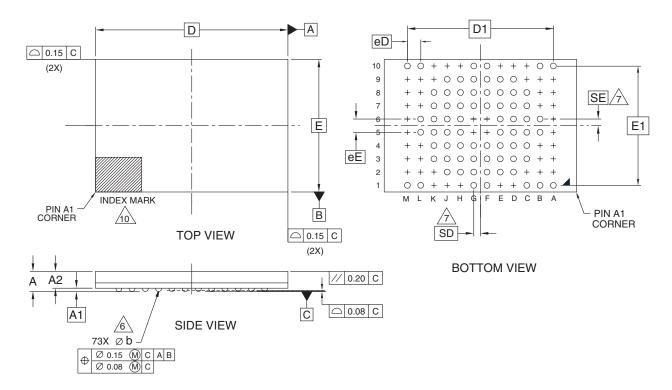
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.

6 DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.

SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.

WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW SD OR SE = 0.000.

WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, SD OR SE = e/2


"+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.

10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK, METALLIZED MARK INDENTION OR OTHER MEANS.

3188\38.14b

FLJ073

PACKAGE	FLJ 073			
JEDEC	N/A			
	11.60 mm x 8.00 mm			
		PACKAGE		
SYMBOL	MIN	NOM	MAX	NOTE
Α		1.40		PROFILE
A1	0.25			BALL HEIGHT
A2	0.95		1.13	BODY THICKNESS
D	11.60 BSC.			BODY SIZE
E		8.00 BSC.		BODY SIZE
D1	8.80 BSC.			MATRIX FOOTPRINT
E1	7.20 BSC.			MATRIX FOOTPRINT
MD	12			MATRIX SIZE D DIRECTION
ME	10			MATRIX SIZE E DIRECTION
n	73			BALL COUNT
φb	0.30	0.35	0.40	BALL DIAMETER
eЕ	0.80 BSC.			BALL PITCH
eD	0.80 BSC.			BALL PITCH
SD/SE	0.40 BSC.			SOLDER BALL PLACEMENT
	A2, A3, A4, A5, A6, A7, A8, A9, B2, B3, B4, B7, B8, B9 C2, C9, C10, D1, D10, E1, E10, F5, F6, G5, G6, H1, H10 J1, J10, K1, K2, K9, K10, L2, L3, L4, L7, L8, L9 M2, M3, M4, M5, M6, M7, M8, M9			DEPOPULATED SOLDER BALLS

NOTES:

- DIMENSIONING AND TOLERANCING METHODS PER ASME 1. Y14.5M-1994.
- ALL DIMENSIONS ARE IN MILLIMETERS.
- BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.
- e REPRESENTS THE SOLDER BALL GRID PITCH.
- SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.

SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.

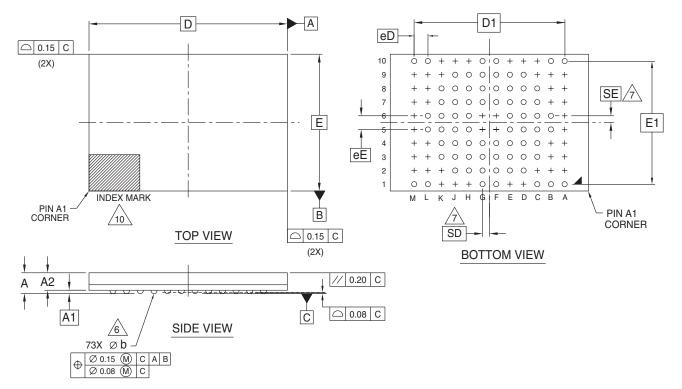
n IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.

Ó DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.

SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.

WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW, SD OR SE = 0.000.

WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, SD OR SE = e/2


- "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.
- NOT USED.

A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.

3232 \ 16-038.14b

FTA073

PACKAGE	FTA 073			
JEDEC	N/A			NOTE
	11.60 mm x 8.00 mm PACKAGE			NOTE
SYMBOL	MIN.	NOM. MAX.		
Α			1.40	PROFILE
A1	0.25			BALL HEIGHT
A2	1.00		1.11	BODY THICKNESS
D		11.60 BSC.		BODY SIZE
Ε		8.00 BSC.		BODY SIZE
D1		8.80 BSC.		MATRIX FOOTPRINT
E1	7.20 BSC.			MATRIX FOOTPRINT
MD	12			MATRIX SIZE D DIRECTION
ME	10			MATRIX SIZE E DIRECTION
n	73			BALL COUNT
Øb	0.30	0.35	0.40	BALL DIAMETER
еE	0.80 BSC			BALL PITCH
eD	0.80 BSC			BALL PITCH
SD/SE	0.40 BSC			SOLDER BALL PLACEMENT
	A2, A3, A4, A5, A6, A7, A8, A9 B2, B3, B4, B7, B8, B9, C2, C9, C10 D1, D10, E1, E10, F5, F6, G5, G6 H1, H10, J1, J10, K1, K2, K9, K10 L2, L3, L4, L7, L8, L9 M2, M3, M4, M5, M6, M7, M8, M9			DEPOPULATED SOLDER BALL

NOTES:

- DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-1994.
- ALL DIMENSIONS ARE IN MILLIMETERS.
- BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.
- e REPRESENTS THE SOLDER BALL GRID PITCH.
- SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.

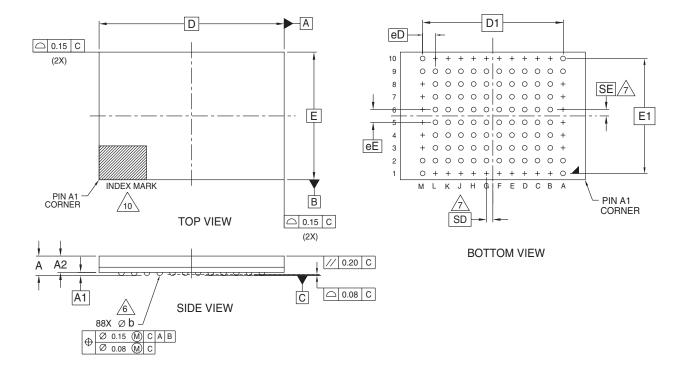
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE

n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.

6 DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.

SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.

WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW SD OR SE = 0.000.


WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, SD OR SE = e/2

- "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS
- N/A
- 10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK, METALLIZED MARK INDENTION OR OTHER MEANS.

3159\38.14b

FTA088

PACKAGE	FTA 088			
JEDEC	N/A			
	11.60 mm x 8.00 mm PACKAGE			
SYMBOL	MIN	NOM	MAX	NOTE
Α			1.40	PROFILE
A1	0.25			BALL HEIGHT
A2	1.00		1.11	BODY THICKNESS
D		11.60 BSC.		BODY SIZE
Е	8.00 BSC.			BODY SIZE
D1	8.80 BSC.			MATRIX FOOTPRINT
E1	7.20 BSC.			MATRIX FOOTPRINT
MD	12			MATRIX SIZE D DIRECTION
ME	10			MATRIX SIZE E DIRECTION
n	88			BALL COUNT
φb	0.30	0.35	0.40	BALL DIAMETER
eЕ	0.80 BSC.			BALL PITCH
eD	0.80 BSC			BALL PITCH
SD/SE	0.40 BSC.			SOLDER BALL PLACEMENT
	A3,A4,A5,A6,A7,A8,B1,B10,C1,C10,D1,D10 E1,E10,F1,F10,G1,G10,H1,H10 J1,J10,K1,K10,L1,L10,M3,M4,M5,M6,M7,M8			DEPOPULATED SOLDER BALLS

NOTES:

- DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS.
- BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.
- e REPRESENTS THE SOLDER BALL GRID PITCH.
- SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.

SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.

n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.

6 DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.

SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.

WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW SD OR SE = 0.000.

WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, SD OR SE = e/2

- "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.

1 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.

3237 \ 16-038.14b

S29JL064H

For Multi-Chip Products (MCP)
64 Megabit (8 M x 8-Bit/4 M x 16-Bit)
CMOS 3.0 Volt-only, Simultaneous Read/Write
Flash Memory

Distinctive Characteristics

Architectural Advantages

■ Simultaneous Read/Write operations

- Data can be continuously read from one bank while executing erase/program functions in another bank.
- Zero latency between read and write operations

■ Flexible Bank architecture

- Read may occur in any of the three banks not being written or erased.
- Four banks may be grouped by customer to achieve desired bank divisions.

■ Boot Sectors

- Top and bottom boot sectors in the same device
- Any combination of sectors can be erased

■ Manufactured on 130 nm process technology

■ SecSi[™] (Secured Silicon) Sector: Extra 256 Byte sector

- Factory locked and identifiable: 16 bytes available for secure, random factory Electronic Serial Number; verifiable as factory locked through autoselect function.
- Customer lockable: One-time programmable only.
 Once locked, data cannot be changed

Zero Power Operation

 Sophisticated power management circuits reduce power consumed during inactive periods to nearly

■ Compatible with JEDEC standards

 Pinout and software compatible with single-powersupply flash standard

Performance Characteristics

■ High performance

- Access time as fast as 55 ns
- Program time: 4 μs/word typical using accelerated programming function

Ultra low power consumption (typical values)

2 mA active read current at 1 MHz

- 10 mA active read current at 5 MHz
- 200 nA in standby or automatic sleep mode

Cycling Endurance: 1 million cycles per sector typical

■ Data Retention: 20 years typical

Software Features

■ Supports Common Flash Memory Interface (CFI)

■ Erase Suspend/Erase Resume

 Suspends erase operations to read data from, or program data to, a sector that is not being erased, then resumes the erase operation.

■ Data# Polling and Toggle Bits

 Provides a software method of detecting the status of program or erase cycles

■ Unlock Bypass Program command

 Reduces overall programming time when issuing multiple program command sequences

Hardware Features

■ Ready/Busy# output (RY/BY#)

Hardware method for detecting program or erase cycle completion

■ Hardware reset pin (RESET#)

 Hardware method of resetting the internal state machine to the read mode

■ WP#/ACC input pin

- Write protect (WP#) function protects sectors 0, 1, 140, and 141, regardless of sector protect status
- Acceleration (ACC) function accelerates program timing

■ Sector protection

- Hardware method to prevent any program or erase operation within a sector
- Temporary Sector Unprotect allows changing data in protected sectors in-system

General Description

The S71JLxxxHxx_00 is a 64 megabit, 3.0 volt-only flash memory device, organized as 4,194,304 words of 16 bits each or 8,388,608 bytes of 8 bits each. Word mode Data appears on DQ15–DQ0; byte mode data appears on DQ7–DQ0. The device is designed to be programmed in-system with the standard 3.0 volt V_{CC} supply, and can also be programmed in standard EPROM programmers.

Standard control pins—chip enable (CE#), write enable (WE#), and output enable (OE#)—control normal read and write operations, and avoid bus contention issues.

The device requires only a **single 3.0 volt power supply** for both read and write functions. Internally generated and regulated voltages are provided for the program and erase operations.

Simultaneous Read/Write Operations with Zero Latency

The Simultaneous Read/Write architecture provides **simultaneous operation** by dividing the memory space into **four banks**, two 8 Mb banks with small and large sectors, and two 24 Mb banks of large sectors. Sector addresses are fixed, system software can be used to form user-defined bank groups.

During an Erase/Program operation, any of the three non-busy banks may be read from. Note that only two banks can operate simultaneously. The device can improve overall system performance by allowing a host system to program or erase in one bank, then immediately and simultaneously read from the other bank, with zero latency. This releases the system from waiting for the completion of program or erase operations.

The S71JLxxxHxx_00 can be organized as both a top and bottom boot sector configuration.

Bank	Megabits	Sector Sizes
Bank 1	8 Mb	Eight 8 Kbyte/4 Kword, Fifteen 64 Kbyte/32 Kword
Bank 2	24 Mb	Forty-eight 64 Kbyte/32 Kword
Bank 3	24 Mb	Forty-eight 64 Kbyte/32 Kword
Bank 4	8 Mb	Eight 8 Kbyte/4 Kword, Fifteen 64 Kbyte/32 Kword

S7IJLxxxHxx 00 Features

The **SecSi™** (**Secured Silicon**) **Sector** is an extra 256 byte sector capable of being permanently locked by FASL or customers. The SecSi Customer Indicator Bit (DQ6) is permanently set to 1 if the part has been customer locked, permanently set to 0 if the part has been factory locked, and is 0 if customer lockable. This way, customer lockable parts can never be used to replace a factory locked part.

Factory locked parts provide several options. The SecSi Sector may store a secure, random 16 byte ESN (Electronic Serial Number), customer code (programmed through Spansion programming services), or both. Customer Lockable parts may utilize the SecSi Sector as bonus space, reading and writing like any other flash sector, or may permanently lock their own code there.

38 \$29]L064H \$71|LxxxHxx_00A| February 25, 2004

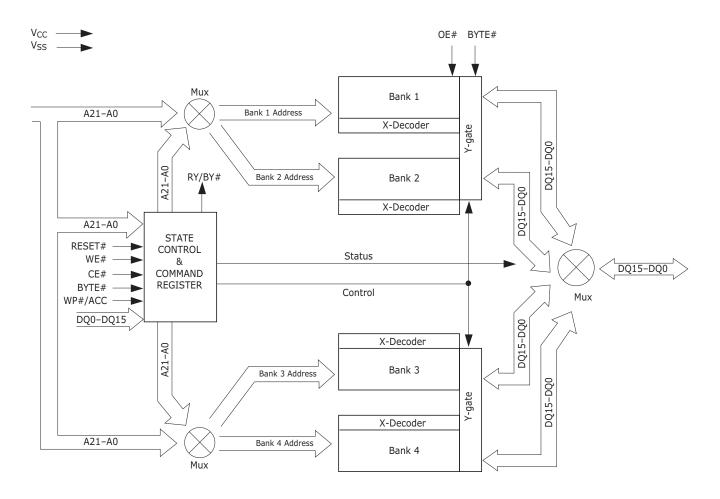
DMS (Data Management Software) allows systems to easily take advantage of the advanced architecture of the simultaneous read/write product line by allowing removal of EEPROM devices. DMS will also allow the system software to be simplified, as it will perform all functions necessary to modify data in file structures, as opposed to single-byte modifications. To write or update a particular piece of data (a phone number or configuration data, for example), the user only needs to state which piece of data is to be updated, and where the updated data is located in the system. This is an advantage compared to systems where userwritten software must keep track of the old data location, status, logical to physical translation of the data onto the Flash memory device (or memory devices), and more. Using DMS, user-written software does not need to interface with the Flash memory directly. Instead, the user's software accesses the Flash memory by calling one of only six functions.

The device offers complete compatibility with the **JEDEC 42.4 sin-gle-power-supply Flash command set standard**. Commands are written to the command register using standard microprocessor write timings. Reading data out of the device is similar to reading from other Flash or EPROM devices.

The host system can detect whether a program or erase operation is complete by using the device **status bits:** RY/BY# pin, DQ7 (Data# Polling) and DQ6/DQ2 (toggle bits). After a program or erase cycle has been completed, the device automatically returns to the read mode.

The **sector erase architecture** allows memory sectors to be erased and reprogrammed without affecting the data contents of other sectors. The device is fully erased when shipped from the factory.

Hardware data protection measures include a low V_{CC} detector that automatically inhibits write operations during power transitions. The **hardware sector protection** feature disables both program and erase operations in any combination of the sectors of memory. This can be achieved in-system or via programming equipment.

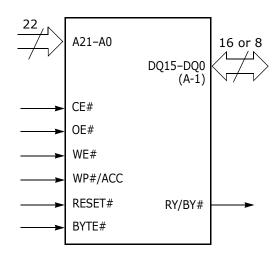

The device offers two power-saving features. When addresses have been stable for a specified amount of time, the device enters the **automatic sleep mode**. The system can also place the device into the **standby mode**. Power consumption is greatly reduced in both modes.

Product Selector Guide

Part Number	S7IJLxxxHxx_00			
Speed Option Standard Voltage Range: $V_{CC} = 2.7-3.6 \text{ V}$		55	70	85
Max Access Time (ns),	55	70	85	
CE# Access (ns), t _{CE}	55	70	85	
OE# Access (ns), t _{OE}		25	30	40

BLOCK DIAGRAM

40 \$29]L064H \$71]LxxxHxx_00Al February 25, 2004


Pin Description

A21-A0 22 Addresses DQ14-DQ0 = 15 Data Inputs/Outputs (x16-only devices) DQ15/A-1 DQ15 (Data Input/Output, word mode), A-1 (LSB Address Input, byte mode) CE# = Chip Enable OE# Output Enable = WE# Write Enable = Hardware Write Protect/ WP#/ACC Acceleration Pin RESET#=Hardware Reset Pin, Active Low BYTE# Selects 8-bit or 16-bit mode RY/BY# Ready/Busy Output 3.0 volt-only single power supply V_{CC} (see Product Selector Guide for speed options and voltage supply tolerances) V_{SS} Device Ground

LOGIC SYMBOL

NC

=

Pin Not Connected Internally

Device Bus Operations

This section describes the requirements and use of the device bus operations, which are initiated through the internal command register. The command register itself does not occupy any addressable memory location. The register is a latch used to store the commands, along with the address and data information needed to execute the command. The contents of the register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device. Table 1 lists the device bus operations, the inputs and control levels they require, and the resulting output. The following subsections describe each of these operations in further detail.

DQI5-DQ8 D07-**Addresses** BYTE# BYTE# **Operation** CE# OE# WE# RESET# WP#/ACC (Note 2) DQ0 = V_{IH} = V_{IL} Read L L Н Н L/H A_{IN} Dout D_{OUT} DQ14-DQ8 = High-Z, DQ15 = A-1 D_{IN} Write L Н L Н (Note 3) A_{IN} D_{IN} V_{CC} ± $V_{CC} \pm$ High-Z Standby Χ Χ L/H Χ High-Z High-Z 0.3 V 0.3 V Output Disable Н High-Z L Н Н L/H Χ High-Z High-Z Reset Χ Χ Χ L L/H Χ High-Z High-Z High-Z SA, A6 = L,Χ Sector Protect (Note 2) L Н L L/H Χ V_{ID} D_{IN} A1 = H, A0 = LSA, A6 = H,Sector Unprotect (Note 2) L Н L (Note 3) Χ Χ V_{ID} D_{IN} A1 = H, A0 = LTemporary Sector Χ Χ D_{IN} Χ V_{ID} (Note 3) A_{IN} D_{IN} High-Z Unprotect

Table I. S7IJLxxxHxx_00 Device Bus Operations

Legend: $L = Logic\ Low = V_{IL}$, $H = Logic\ High = V_{IH}$, $V_{ID} = 11.5$ – $12.5\ V$, $V_{HH} = 9.0 \pm 0.5\ V$, $X = Don't\ Care$, $SA = Sector\ Address$, $A_{IN} = Address\ In$, $D_{IN} = Data\ In$, $D_{OUT} = Data\ Out$

Notes:

- 1. Addresses are A21:A0 in word mode (BYTE# = V_{IH}), A21:A-1 in byte mode (BYTE# = V_{IL}).
- 2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the "Sector/Sector Block Protection and Unprotection" section.
- 3. If WP#/ACC = V_{IL} , sectors 0, 1, 140, and 141 remain protected. If WP#/ACC = V_{IH} , protection on sectors 0, 1, 140, and 141 depends on whether they were last protected or unprotected using the method described in "Sector/Sector Block Protection and Unprotection". If WP#/ACC = V_{HH} , all sectors will be unprotected.

42 S29|L064H S7||LxxxHxx 00A| February 25, 2004

Word/Byte Configuration

The BYTE# pin controls whether the device data I/O pins operate in the byte or word configuration. If the BYTE# pin is set at logic `1', the device is in word configuration, DQ15–DQ0 are active and controlled by CE# and OE#.

If the BYTE# pin is set at logic '0', the device is in byte configuration, and only data I/O pins DQ7–DQ0 are active and controlled by CE# and OE#. The data I/O pins DQ14–DQ8 are tri-stated, and the DQ15 pin is used as an input for the LSB (A-1) address function.

Requirements for Reading Array Data

To read array data from the outputs, the system must drive the CE# and OE# pins to $V_{\rm IL}$. CE# is the power control and selects the device. OE# is the output control and gates array data to the output pins. WE# should remain at $V_{\rm IH}$. The BYTE# pin determines whether the device outputs array data in words or bytes.

The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This ensures that no spurious alteration of the memory content occurs during the power transition. No command is necessary in this mode to obtain array data. Standard microprocessor read cycles that assert valid addresses on the device address inputs produce valid data on the device data outputs. Each bank remains enabled for read access until the command register contents are altered.

Refer to the AC "Read-Only Operations" section table for timing specifications and to 14 for the timing diagram. I_{CC1} in the DC Characteristics table represents the active current specification for reading array data.

Writing Commands/Command Sequences

To write a command or command sequence (which includes programming data to the device and erasing sectors of memory), the system must drive WE# and CE# to $V_{\rm IL}$, and OE# to $V_{\rm IH}$.

For program operations, the BYTE# pin determines whether the device accepts program data in bytes or words. Refer to "Word/Byte Configuration" for more information.

The device features an **Unlock Bypass** mode to facilitate faster programming. Once a bank enters the Unlock Bypass mode, only two write cycles are required to program a word or byte, instead of four. The "Byte/Word Program Command Sequence" section has details on programming data to the device using both standard and Unlock Bypass command sequences.

An erase operation can erase one sector, multiple sectors, or the entire device. Table 3 indicates the address space that each sector occupies. Similarly, a "sector address" is the address bits required to uniquely select a sector. The "Command Definitions" section has details on erasing a sector or the entire chip, or suspending/resuming the erase operation.

The device address space is divided into four banks. A "bank address" is the address bits required to uniquely select a bank.

 I_{CC2} in the DC Characteristics table represents the active current specification for the write mode. The "AC Characteristics" section contains timing specification tables and timing diagrams for write operations.

Accelerated Program Operation

The device offers accelerated program operations through the ACC function. This is one of two functions provided by the WP#/ACC pin. This function is primarily intended to allow faster manufacturing throughput at the factory.

If the system asserts V_{HH} on this pin, the device automatically enters the aforementioned Unlock Bypass mode, temporarily unprotects any protected sectors, and uses the higher voltage on the pin to reduce the time required for program operations. The system would use a two-cycle program command sequence as required by the Unlock Bypass mode. Removing V_{HH} from the WP#/ACC pin returns the device to normal operation. Note that V_{HH} must not be asserted on WP#/ACC for operations other than accelerated programming, or device damage may result. In addition, the WP#/ACC pin must not be left floating or unconnected; inconsistent behavior of the device may result. See "Write Protect (WP#)" on page 51. for related information.

Autoselect Functions

If the system writes the autoselect command sequence, the device enters the autoselect mode. The system can then read autoselect codes from the internal register (which is separate from the memory array) on DQ15–DQ0. Standard read cycle timings apply in this mode. Refer to the "Autoselect Mode" section and "Autoselect Command Sequence" section sections for more information.

Simultaneous Read/Write Operations with Zero Latency

This device is capable of reading data from one bank of memory while programming or erasing in the other bank of memory. An erase operation may also be suspended to read from or program to another location within the same bank (except the sector being erased). Figure 21 shows how read and write cycles may be initiated for simultaneous operation with zero latency. I_{CC6} and I_{CC7} in the "DC Characteristics" section table represent the current specifications for read-while-program and read-while-erase, respectively.

Standby Mode

When the system is not reading or writing to the device, it can place the device in the standby mode. In this mode, current consumption is greatly reduced, and the outputs are placed in the high impedance state, independent of the OE# input.

The device enters the CMOS standby mode when the CE# and RESET# pins are both held at $V_{CC} \pm 0.3$ V. (Note that this is a more restricted voltage range than V_{IH} .) If CE# and RESET# are held at V_{IH} , but not within $V_{CC} \pm 0.3$ V, the device will be in the standby mode, but the standby current will be greater. The device requires standard access time (t_{CE}) for read access when the device is in either of these standby modes, before it is ready to read data.

If the device is deselected during erasure or programming, the device draws active current until the operation is completed.

 I_{CC3} in the "DC Characteristics" section table represents the standby current specification.

Automatic Sleep Mode

The automatic sleep mode minimizes Flash device energy consumption. The device automatically enables this mode when addresses remain stable for t_{ACC} + 30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# con-

44 S29]L064H S7I|LxxxHxx_00A| February 25, 2004

trol signals. Standard address access timings provide new data when addresses are changed. While in sleep mode, output data is latched and always available to the system. I_{CC5} in the "DC Characteristics" section table represents the automatic sleep mode current specification.

RESET#: Hardware Reset Pin

The RESET# pin provides a hardware method of resetting the device to reading array data. When the RESET# pin is driven low for at least a period of t_{RP} , the device immediately terminates any operation in progress, tristates all output pins, and ignores all read/write commands for the duration of the RESET# pulse. The device also resets the internal state machine to reading array data. The operation that was interrupted should be reinitiated once the device is ready to accept another command sequence, to ensure data integrity.

Current is reduced for the duration of the RESET# pulse. When RESET# is held at $V_{SS}\pm0.3$ V, the device draws CMOS standby current (I_{CC4}). If RESET# is held at V_{IL} but not within $V_{SS}\pm0.3$ V, the standby current will be greater.

The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the Flash memory, enabling the system to read the boot-up firmware from the Flash memory.

If RESET# is asserted during a program or erase operation, the RY/BY# pin remains a "0" (busy) until the internal reset operation is complete, which requires a time of t_{READY} (during Embedded Algorithms). The system can thus monitor RY/BY# to determine whether the reset operation is complete. If RESET# is asserted when a program or erase operation is not executing (RY/BY# pin is "1"), the reset operation is completed within a time of t_{READY} (not during Embedded Algorithms). The system can read data t_{RH} after the RESET# pin returns to t_{READY} .

Refer to the "AC Characteristics" section tables for RESET# parameters and to 15 for the timing diagram.

Output Disable Mode

When the OE# input is at V_{IH} , output from the device is disabled. The output pins are placed in the high impedance state.

Table 2. S29JL064H Sector Architecture

Bank	Sector	Sector Address A21-A12	Sector Size (Kbytes/ Kwords)	(x8) Address Range	(x16) Address Range
	SA0	0000000000	8/4	000000h-001FFFh	00000h-00FFFh
	SA1	000000001	8/4	002000h-003FFFh	01000h-01FFFh
	SA2	000000010	8/4	004000h-005FFFh	02000h-02FFFh
	SA3	000000011	8/4	006000h-007FFFh	03000h-03FFFh
_	SA4	000000100	8/4	008000h-009FFFh	04000h-04FFFh
_	SA5	000000101	8/4	00A000h-00BFFFh	05000h-05FFFh
_	SA6	0000000110	8/4	00C000h-00DFFFh	06000h-06FFFh
_	SA7	0000000111	8/4	00E000h-00FFFFh	07000h-07FFFh
_	SA8	0000001xxx	64/32	010000h-01FFFFh	08000h-0FFFFh
_	SA9	0000010xxx	64/32	020000h-02FFFFh	10000h-17FFFh
_	SA10	0000011xxx	64/32	030000h-03FFFFh	18000h-1FFFFh
Bank 1	SA11	0000100xxx	64/32	040000h-04FFFFh	20000h-27FFFh
_	SA12	0000101xxx	64/32	050000h-05FFFFh	28000h-2FFFFh
_	SA13	0000110xxx	64/32	060000h-06FFFFh	30000h-37FFFh
_	SA14	0000111xxx	64/32	070000h-07FFFh	38000h-3FFFFh
_	SA15	0001000xxx	64/32	080000h-08FFFFh	40000h-47FFFh
_	SA16	0001001xxx	64/32	090000h-09FFFFh	48000h-4FFFFh
	SA17	0001010xxx	64/32	0A0000h-0AFFFFh	50000h-57FFFh
	SA18	0001011xxx	64/32	0B0000h-0BFFFFh	58000h-5FFFFh
	SA19	0001100xxx	64/32	0C0000h-0CFFFFh	60000h-67FFh
	SA20	0001101xxx	64/32	0D0000h-0DFFFFh	68000h-6FFFFh
	SA21	0001110xxx	64/32	0E0000h-0EFFFFh	70000h-77FFFh
	SA22	0001111xxx	64/32	0F0000h-0FFFFh	78000h-7FFFFh

46 \$29JL064H \$71JLxxxHxx_00Al February 25, 2004

Table 2. S29JL064H Sector Architecture (Continued)

Bank	Sector	Sector Address A21-A12	Sector Size (Kbytes/ Kwords)	(x8) Address Range	(x16) Address Range
	SA23	0010000xxx	64/32	100000h-10FFFFh	80000h-87FFh
	SA24	0010001xxx	64/32	110000h-11FFFFh	88000h-8FFFFh
	SA25	0010010xxx	64/32	120000h-12FFFFh	90000h-97FFh
	SA26	0010011xxx	64/32	130000h-13FFFFh	98000h-9FFFFh
	SA27	0010100xxx	64/32	140000h-14FFFFh	A0000h-A7FFFh
	SA28	0010101xxx	64/32	150000h-15FFFFh	A8000h-AFFFFh
	SA29	0010110xxx	64/32	160000h-16FFFFh	B0000h-B7FFFh
	SA30	0010111xxx	64/32	170000h-17FFFFh	B8000h-BFFFFh
	SA31	0011000xxx	64/32	180000h-18FFFFh	C0000h-C7FFh
	SA32	0011001xxx	64/32	190000h-19FFFFh	C8000h-CFFFFh
	SA33	0011010xxx	64/32	1A0000h-1AFFFFh	D0000h-D7FFFh
	SA34	0011011xxx	64/32	1B0000h-1BFFFFh	D8000h-DFFFFh
	SA35	0011000xxx	64/32	1C0000h-1CFFFFh	E0000h-E7FFh
	SA36	0011101xxx	64/32	1D0000h-1DFFFFh	E8000h-EFFFFh
	SA37	0011110xxx	64/32	1E0000h-1EFFFFh	F0000h-F7FFFh
	SA38	0011111xxx	64/32	1F0000h-1FFFFFh	F8000h-FFFFFh
	SA39	0100000xxx	64/32	200000h-20FFFFh	100000h-107FFFh
	SA40	0100001xxx	64/32	210000h-21FFFFh	108000h-10FFFFh
	SA41	0100010xxx	64/32	220000h-22FFFFh	110000h-117FFFh
	SA42	0101011xxx	64/32	230000h-23FFFFh	118000h-11FFFFh
	SA43	0100100xxx	64/32	240000h-24FFFFh	120000h-127FFFh
	SA44	0100101xxx	64/32	250000h-25FFFFh	128000h-12FFFFh
	SA45	0100110xxx	64/32	260000h-26FFFFh	130000h-137FFFh
Bank 2	SA46	0100111xxx	64/32	270000h-27FFFh	138000h-13FFFFh
Dank 2	SA47	0101000xxx	64/32	280000h-28FFFFh	140000h-147FFFh
	SA48	0101001xxx	64/32	290000h-29FFFFh	148000h-14FFFFh
	SA49	0101010xxx	64/32	2A0000h-2AFFFFh	150000h-157FFFh
	SA50	0101011xxx	64/32	2B0000h-2BFFFFh	158000h-15FFFFh
	SA51	0101100xxx	64/32	2C0000h-2CFFFFh	160000h-167FFFh
	SA52	0101101xxx	64/32	2D0000h-2DFFFFh	168000h-16FFFFh
	SA53	0101110xxx	64/32	2E0000h-2EFFFFh	170000h-177FFFh
	SA54	0101111xxx	64/32	2F0000h-2FFFFFh	178000h-17FFFFh
	SA55	0110000xxx	64/32	300000h-30FFFFh	180000h-187FFFh
	SA56	0110001xxx	64/32	310000h-31FFFFh	188000h-18FFFFh
	SA57	0110010xxx	64/32	320000h-32FFFFh	190000h-197FFFh
	SA58	0110011xxx	64/32	330000h-33FFFFh	198000h-19FFFFh
	SA59	0110100xxx	64/32	340000h-34FFFFh	1A0000h-1A7FFFh
	SA60	0110101xxx	64/32	350000h-35FFFFh	1A8000h-1AFFFFh
	SA61	0110110xxx	64/32	360000h-36FFFFh	1B0000h-1B7FFFh
	SA62	0110111xxx	64/32	370000h-37FFFFh	1B8000h-1BFFFFh
	SA63	0111000xxx	64/32	380000h-38FFFFh	1C0000h-1C7FFFh
Ī	SA64	0111001xxx	64/32	390000h-39FFFFh	1C8000h-1CFFFFh
	SA65	0111010xxx	64/32	3A0000h-3AFFFFh	1D0000h-1D7FFFh
	SA66	0111011xxx	64/32	3B0000h-3BFFFFh	1D8000h-1DFFFFh
	SA67	0111100xxx	64/32	3C0000h-3CFFFFh	1E0000h-1E7FFFh
	SA68	0111101xxx	64/32	3D0000h-3DFFFFh	1E8000h-1EFFFFh
	SA69	0111110xxx	64/32	3E0000h-3EFFFFh	1F0000h-1F7FFFh
	SA70	01111111xxx	64/32	3F0000h-3FFFFFh	1F8000h-1FFFFFh

Table 2. S29JL064H Sector Architecture (Continued)

Bank	Sector	Sector Address A21-A12	Sector Size (Kbytes/ Kwords)	(x8) Address Range	(x16) Address Range
	SA71	1000000xxx	64/32	400000h-40FFFFh	200000h-207FFFh
	SA72	1000001xxx	64/32	410000h-41FFFFh	208000h-20FFFFh
	SA73	1000010xxx	64/32	420000h-42FFFFh	210000h-217FFFh
	SA74	1000011xxx	64/32	430000h-43FFFFh	218000h-21FFFFh
	SA75	1000100xxx	64/32	440000h-44FFFFh	220000h-227FFFh
	SA76	1000101xxx	64/32	450000h-45FFFFh	228000h-22FFFFh
	SA77	1000110xxx	64/32	460000h-46FFFFh	230000h-237FFFh
	SA78	1000111xxx	64/32	470000h-47FFFh	238000h-23FFFFh
	SA79	1001000xxx	64/32	480000h-48FFFFh	240000h-247FFh
	SA80	1001001xxx	64/32	490000h-49FFFFh	248000h-24FFFFh
	SA81	1001010xxx	64/32	4A0000h-4AFFFFh	250000h-257FFFh
	SA82	1001011xxx	64/32	4B0000h-4BFFFFh	258000h-25FFFFh
	SA83	1001100xxx	64/32	4C0000h-4CFFFFh	260000h-267FFh
	SA84	1001101xxx	64/32	4D0000h-4DFFFFh	268000h-26FFFFh
	SA85	1001110xxx	64/32	4E0000h-4EFFFFh	270000h-277FFFh
	SA86	1001111xxx	64/32	4F0000h-4FFFFFh	278000h-27FFFh
	SA87	1010000xxx	64/32	500000h-50FFFh	280000h-28FFFFh
	SA88	1010001xxx	64/32	510000h-51FFFFh	288000h-28FFFFh
	SA89	1010010xxx	64/32	520000h-52FFFFh	290000h-297FFFh
	SA90	1010011xxx	64/32	530000h-53FFFFh	298000h-29FFFFh
	SA91	1010100xxx	64/32	540000h-54FFFFh	2A0000h-2A7FFFh
	SA92	1010101xxx	64/32	550000h-55FFFFh	2A8000h-2AFFFFh
	SA93	1010110xxx	64/32	560000h-56FFFFh	2B0000h-2B7FFFh
D1- 2	SA94	1010111xxx	64/32	570000h-57FFFh	2B8000h-2BFFFFh
Bank 3	SA95	1011000xxx	64/32	580000h-58FFFFh	2C0000h-2C7FFFh
-	SA96	1011001xxx	64/32	590000h-59FFFFh	2C8000h-2CFFFFh
	SA97	1011010xxx	64/32	5A0000h-5AFFFFh	2D0000h-2D7FFFh
	SA98	1011011xxx	64/32	5B0000h-5BFFFFh	2D8000h-2DFFFFh
	SA99	1011100xxx	64/32	5C0000h-5CFFFFh	2E0000h-2E7FFh
	SA100	1011101xxx	64/32	5D0000h-5DFFFFh	2E8000h-2EFFFFh
	SA101	1011110xxx	64/32	5E0000h-5EFFFFh	2F0000h-2FFFFFh
	SA102	10111111xxx	64/32	5F0000h-5FFFFFh	2F8000h-2FFFFFh
	SA103	1100000xxx	64/32	600000h-60FFFFh	300000h-307FFFh
	SA104	1100001xxx	64/32	610000h-61FFFFh	308000h-30FFFFh
	SA105	1100010xxx	64/32	620000h-62FFFFh	310000h-317FFFh
	SA106	1100011xxx	64/32	630000h-63FFFFh	318000h-31FFFFh
	SA107	1100100xxx	64/32	640000h-64FFFFh	320000h-327FFFh
	SA108	1100101xxx	64/32	650000h-65FFFFh	328000h-32FFFFh
	SA109	1100110xxx	64/32	660000h-66FFFFh	330000h-337FFFh
	SA110	1100111xxx	64/32	670000h-67FFFh	338000h-33FFFFh
	SA111	1101000xxx	64/32	680000h-68FFFFh	340000h-347FFh
	SA112	1101001xxx	64/32	690000h-69FFFFh	348000h-34FFFh
	SA113	1101010xxx	64/32	6A0000h-6AFFFFh	350000h-357FFFh
	SA114	1101011xxx	64/32	6B0000h-6BFFFFh	358000h-35FFFFh
	SA115	1101100xxx	64/32	6C0000h-6CFFFFh	360000h-367FFh
	SA116	1101101xxx	64/32	6D0000h-6DFFFFh	368000h-36FFFFh
	SA117	1101110xxx	64/32	6E0000h-6EFFFFh	370000h-377FFFh
	SA118	11011111xxx	64/32	6F0000h-6FFFFh	378000h-37FFFFh

48 \$29JL064H \$71JLxxxHxx_00Al February 25, 2004

Table 2. S29JL064H Sector Architecture (Continued)

Bank	Sector	Sector Address A21-A12	Sector Size (Kbytes/ Kwords)	(x8) Address Range	(x16) Address Range
	SA119	1110000xxx	64/32	700000h-70FFFh	380000h-387FFFh
	SA120	1110001xxx	64/32	710000h-71FFFFh	388000h-38FFFFh
	SA121	1110010xxx	64/32	720000h-72FFFh	390000h-397FFFh
	SA122	1110011xxx	64/32	730000h-73FFFFh	398000h-39FFFFh
	SA123	1110100xxx	64/32	740000h-74FFFh	3A0000h-3A7FFFh
	SA124	1110101xxx	64/32	750000h-75FFFh	3A8000h-3AFFFFh
	SA125	1110110xxx	64/32	760000h-76FFFh	3B0000h-3B7FFFh
	SA126	1110111xxx	64/32	770000h-77FFFh	3B8000h-3BFFFFh
	SA127	1111000xxx	64/32	780000h-78FFFh	3C0000h-3C7FFFh
	SA128	1111001xxx	64/32	790000h-79FFFh	3C8000h-3CFFFFh
	SA129	1111010xxx	64/32	7A0000h-7AFFFFh	3D0000h-3D7FFFh
Bank 4	SA130	1111011xxx	64/32	7B0000h-7BFFFFh	3D8000h-3DFFFFh
	SA131	1111100xxx	64/32	7C0000h-7CFFFh	3E0000h-3E7FFFh
	SA132	1111101xxx	64/32	7D0000h-7DFFFFh	3E8000h-3EFFFFh
	SA133	1111110xxx	64/32	7E0000h-7EFFFFh	3F0000h-3F7FFFh
	SA134	1111111000	8/4	7F0000h-7F1FFFh	3F8000h-3F8FFFh
	SA135	1111111001	8/4	7F2000h-7F3FFFh	3F9000h-3F9FFFh
	SA136	1111111010	8/4	7F4000h-7F5FFFh	3FA000h-3FAFFFh
	SA137	1111111011	8/4	7F6000h-7F7FFFh	3FB000h-3FBFFFh
	SA138	1111111100	8/4	7F8000h-7F9FFFh	3FC000h-3FCFFFh
	SA139	1111111101	8/4	7FA000h-7FBFFFh	3FD000h-3FDFFFh
	SA140	1111111110	8/4	7FC000h-7FDFFFh	3FE000h-3FEFFFh
	SA141	1111111111	8/4	7FE000h-7FFFFh	3FF000h-3FFFFFh

Note: The address range is A21:A-1 in byte mode (BYTE#= V_{IL}) or A21:A0 in word mode (BYTE#= V_{IH}).

Table 3. Bank Address

Bank	A2I-A19
1	000
2	001, 010, 011
3	100, 101, 110
4	111

Table 4. SecSi™ Sector Addresses

Device	Sector Size	(x8) Address Range	(x16) Address Range
S29JL064H	256 bytes	000000h-0000FFh	000000h-00007Fh

Autoselect Mode

The autoselect mode provides manufacturer and device identification, and sector protection verification, through identifier codes output on DQ7–DQ0. This mode is primarily intended for programming equipment to automatically match a device to be programmed with its corresponding programming algorithm. However, the autoselect codes can also be accessed in-system through the command register.

Sector/Sector Block Protection and Unprotection

(Note: For the following discussion, the term "sector" applies to both sectors and sector blocks. A sector block consists of two or more adjacent sectors that are protected or unprotected at the same time (see Table 5).

The hardware sector protection feature disables both program and erase operations in any sector. The hardware sector unprotection feature re-enables both program and erase operations in previously protected sectors. Sector protection/unprotection can be implemented via two methods.

Table 5. S7IJLxxxHxx_00 Boot Sector/Sector Block Addresses for Protection/Unprotection

Sector	A21-A12	Sector/ Sector Block Size	
SA0	000000000	8 Kbytes	
SA1	000000001	8 Kbytes	
SA2	000000010	8 Kbytes	
SA3	000000011	8 Kbytes	
SA4	000000100	8 Kbytes	
SA5	000000101	8 Kbytes	
SA6	000000110	8 Kbytes	
SA7	000000111	8 Kbytes	
SA8-SA10	0000001XXX, 0000010XXX, 0000011XXX,	192 (3x64) Kbytes	
SA11-SA14	00001XXXXX	256 (4x64) Kbytes	
SA15-SA18	00010XXXXX	256 (4x64) Kbytes	
SA19-SA22	00011XXXXX	256 (4x64) Kbytes	
SA23-SA26	00100XXXXX	256 (4x64) Kbytes	
SA27-SA30	00101XXXXX	256 (4x64) Kbytes	
SA31-SA34	00110XXXXX	256 (4x64) Kbytes	
SA35-SA38	00111XXXXX	256 (4x64) Kbytes	
SA39-SA42	01000XXXXX	256 (4x64) Kbytes	
SA43-SA46	01001XXXXX	256 (4x64) Kbytes	
SA47-SA50	01010XXXXX	256 (4x64) Kbytes	
SA51-SA54	01011XXXXX	256 (4x64) Kbytes	
SA55-SA58	01100XXXXX	256 (4x64) Kbytes	
SA59-SA62	01101XXXXX	256 (4x64) Kbytes	
SA63-SA66	01110XXXXX	256 (4x64) Kbytes	
SA67-SA70	01111XXXXX	256 (4x64) Kbytes	
SA71-SA74	10000XXXXX	256 (4x64) Kbytes	
SA75-SA78	10001XXXXX	256 (4x64) Kbytes	
SA79-SA82	10010XXXXX	256 (4x64) Kbytes	
SA83-SA86	10011XXXXX	256 (4x64) Kbytes	
SA87-SA90	10100XXXXX	256 (4x64) Kbytes	
SA91-SA94	10101XXXXX	256 (4x64) Kbytes	
SA95-SA98	10110XXXXX	256 (4x64) Kbytes	
SA99-SA102	10111XXXXX	256 (4x64) Kbytes	
SA103-SA106	11000XXXXX	256 (4x64) Kbytes	

50 \$29]L064H \$71]LxxxHxx_00Al February 25, 2004

Table 5. S7IJLxxxHxx_00 Boot Sector/Sector Block Addresses for Protection/Unprotection (Continued)

Sector	A21-A12	Sector/ Sector Block Size
SA107-SA110	11001XXXXX	256 (4x64) Kbytes
SA111-SA114	11010XXXXX	256 (4x64) Kbytes
SA115-SA118	11011XXXXX	256 (4x64) Kbytes
SA119-SA122	11100XXXXX	256 (4x64) Kbytes
SA123-SA126	11101XXXXX	256 (4x64) Kbytes
SA127-SA130	11110XXXXX	256 (4x64) Kbytes
SA131-SA133	1111100XXX, 11111101XXX, 1111110XXX	192 (3x64) Kbytes
SA134	1111111000	8 Kbytes
SA135	1111111001	8 Kbytes
SA136	1111111010	8 Kbytes
SA137	1111111011	8 Kbytes
SA138	1111111100	8 Kbytes
SA139	111111101	8 Kbytes
SA140	1111111110 8 Kbytes	
SA141	111111111	8 Kbytes

Sector protect/Sector Unprotect requires V_{ID} on the RESET# pin only, and can be implemented either in-system or via programming equipment. Figure 2 shows the algorithms and Figure 26 shows the timing diagram. For sector unprotect, all unprotected sectors must first be protected prior to the first sector unprotect write cycle. Note that the sector unprotect algorithm unprotects all sectors in parallel. All previously protected sectors must be individually re-protected. To change data in protected sectors efficiently, the temporary sector unprotect function is available. See "Temporary Sector Unprotect" .

The device is shipped with all sectors unprotected. Optional Spansion programming service enable programming and protecting sectors at the factory prior to shipping the device. Contact your local sales office for details.

It is possible to determine whether a sector is protected or unprotected. See the "Autoselect Mode" section section for details.

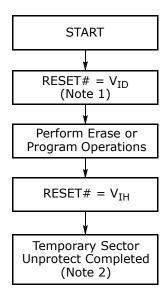
Write Protect (WP#)

The Write Protect function provides a hardware method of protecting without using $V_{\rm ID}$. This function is one of two provided by the WP#/ACC pin.

If the system asserts $V_{\rm IL}$ on the WP#/ACC pin, the device disables program and erase functions in sectors 0, 1, 140, and 141, independently of whether those sectors were protected or unprotected using the method described in "Sector/ Sector Block Protection and Unprotection".

If the system asserts V_{IH} on the WP#/ACC pin, the device reverts to whether sectors 0, 1, 140, and 141 were last set to be protected or unprotected. That is, sector protection or unprotection for these sectors depends on whether they were last protected or unprotected using the method described in "Sector/Sector Block Protection and Unprotection".

Note that the WP#/ACC pin must not be left floating or unconnected; inconsistent behavior of the device may result.


Table 6. WP#/ACC Modes

WP# Input Voltage	Device Mode
V _{IL}	Disables programming and erasing in SA0, SA1, SA140, and SA141
V _{IH}	Enables programming and erasing in SA0, SA1, SA140, and SA141, dependent on whether they were last protected or unprotected.
V _{HH}	Enables accelerated programming (ACC). See "Accelerated Program Operation" on page 44

Temporary Sector Unprotect

(Note: For the following discussion, the term "sector" applies to both sectors and sector blocks. A sector block consists of two or more adjacent sectors that are protected or unprotected at the same time (see Table 5).

This feature allows temporary unprotection of previously protected sectors to change data in-system. The Temporary Sector Unprotect mode is activated by setting the RESET# pin to " V_{ID} " section. During this mode, formerly protected sectors can be programmed or erased by selecting the sector addresses. Once V_{ID} is removed from the RESET# pin, all the previously protected sectors are protected again. Figure 2 shows the algorithm, and Figure 25 shows the timing diagrams, for this feature. If the WP#/ACC pin is at V_{IL} , sectors 0, 1, 140, and 141 will remain protected during the Temporary sector Unprotect mode.

Notes:

- 1. All protected sectors unprotected (If WP#/ACC = V_{IL} , sectors 0, 1, 140, and 141 will remain protected).
- 2. All previously protected sectors are protected once again.

Figure I. Temporary Sector Unprotect Operation

52 \$29]L064H \$71]LxxxHxx_00Al February 25, 2004

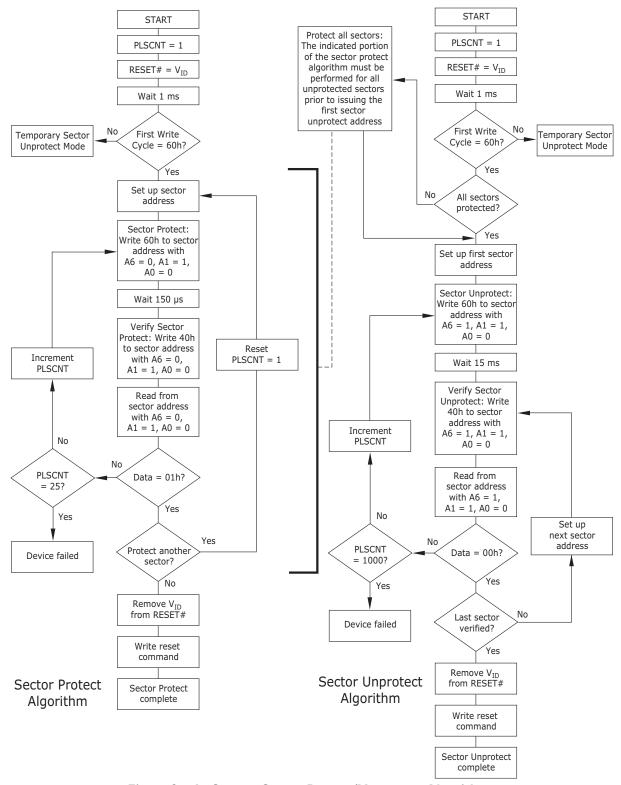


Figure 2. In-System Sector Protect/Unprotect Algorithms

SecSi™ (Secured Silicon) Sector Flash Memory Region

The SecSi (Secured Silicon) Sector feature provides a Flash memory region that enables permanent part identification through an Electronic Serial Number (ESN). The SecSi Sector is 256 bytes in length, and uses a SecSi Sector Indicator

Bit (DQ7) to indicate whether or not the SecSi Sector is locked when shipped from the factory. This bit is permanently set at the factory and cannot be changed, which prevents cloning of a factory locked part. This ensures the security of the ESN once the product is shipped to the field.

The product is available with the SecSi Sector either factory locked or customer lockable. The factory-locked version is always protected when shipped from the factory, and has the SecSi (Secured Silicon) Sector Indicator Bit permanently set to a "1." The customer-lockable version is shipped with the SecSi Sector unprotected, allowing customers to utilize the that sector in any manner they choose. The customer-lockable version has the SecSi (Secured Silicon) Sector Indicator Bit permanently set to a "0." Thus, the SecSi Sector Indicator Bit prevents customer-lockable devices from being used to replace devices that are factory locked. The SecSi Customer Indicator Bit (DQ6) is permanently set to 1 if the part has been customer locked, permanently set to 0 if the part has been factory locked, and is 0 if customer lockable.

The system accesses the SecSi Sector Secure through a command sequence (see "Enter SecSi™ Sector/Exit SecSi Sector Command Sequence"). After the system has written the Enter SecSi Sector command sequence, it may read the SecSi Sector by using the addresses normally occupied by the boot sectors. This mode of operation continues until the system issues the Exit SecSi Sector command sequence, or until power is removed from the device. On power-up, or following a hardware reset, the device reverts to sending commands to the first 256 bytes of Sector 0. Note that the ACC function and unlock bypass modes are not available when the SecSi Sector is enabled.

Factory Locked: SecSi Sector Programmed and Protected At the Factory

In a factory locked device, the SecSi Sector is protected when the device is shipped from the factory. The SecSi Sector cannot be modified in any way. The device is preprogrammed with both a random number and a secure ESN. The 8-word random number is at addresses 000000h-000007h in word mode (or 000000h-00000Fh in byte mode). The secure ESN is programmed in the next 8 words at addresses 000008h-00000Fh (or 000010h-00001Fh in byte mode). The device is available preprogrammed with one of the following:

- A random, secure ESN only
- Customer code through Spansion programming services
- Both a random, secure ESN and customer code through Spansion programming services

Contact an your local sales office for details on using Spansion programming services.

Customer Lockable: SecSi Sector NOT Programmed or Protected At the Factory

If the security feature is not required, the SecSi Sector can be treated as an additional Flash memory space. The SecSi Sector can be read any number of times, but can be programmed and locked only once. Note that the accelerated programming (ACC) and unlock bypass functions are not available when programming the SecSi Sector.

The SecSi Sector area can be protected using one of the following procedures:

■ Write the three-cycle Enter SecSi Sector Region command sequence, and then follow the in-system sector protect algorithm as shown in Figure 2, except that RESET# may be at either V_{IH} or V_{ID} . This allows in-system protections

54 \$29]L064H \$71]LxxxHxx_00Al February 25, 2004

tion of the SecSi Sector Region without raising any device pin to a high voltage. Note that this method is only applicable to the SecSi Sector.

■ To verify the protect/unprotect status of the SecSi Sector, follow the algorithm shown in Figure 3.

Once the SecSi Sector is locked and verified, the system must write the Exit SecSi Sector Region command sequence to return to reading and writing the remainder of the array.

The SecSi Sector lock must be used with caution since, once locked, there is no procedure available for unlocking the SecSi Sector area and none of the bits in the SecSi Sector memory space can be modified in any way.

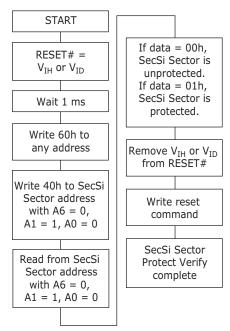


Figure 3. SecSi Sector Protect Verify

Hardware Data Protection

The command sequence requirement of unlock cycles for programming or erasing provides data protection against inadvertent writes (refer to Table 11 for command definitions). In addition, the following hardware data protection measures prevent accidental erasure or programming, which might otherwise be caused by spurious system level signals during V_{CC} power-up and power-down transitions, or from system noise.

Low V_{CC} Write Inhibit

When V_{CC} is less than V_{LKO} , the device does not accept any write cycles. This protects data during V_{CC} power-up and power-down. The command register and all internal program/erase circuits are disabled, and the device resets to the read mode. Subsequent writes are ignored until V_{CC} is greater than V_{LKO} . The system must provide the proper signals to the control pins to prevent unintentional writes when V_{CC} is greater than V_{LKO} .

Write Pulse "Glitch" Protection

Noise pulses of less than 5 ns (typical) on OE#, CE# or WE# do not initiate a write cycle.

Logical Inhibit

Write cycles are inhibited by holding any one of $OE\# = V_{IL}$, $CE\# = V_{IH}$ or $WE\# = V_{IH}$. To initiate a write cycle, CE# and WE# must be a logical zero while OE# is a logical one.

Power-Up Write Inhibit

If WE# = CE# = V_{IL} and OE# = V_{IH} during power up, the device does not accept commands on the rising edge of WE#. The internal state machine is automatically reset to the read mode on power-up.

Common Flash Memory Interface (CFI)

The Common Flash Interface (CFI) specification outlines device and host system software interrogation handshake, which allows specific vendor-specified software algorithms to be used for entire families of devices. Software support can then be device-independent, JEDEC ID-independent, and forward- and backward-compatible for the specified flash device families. Flash vendors can standardize their existing interfaces for long-term compatibility.

This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to address 55h in word mode (or address AAh in byte mode), any time the device is ready to read array data. The system can read CFI information at the addresses given in Tables 7–10. To terminate reading CFI data, the system must write the reset command. The CFI Query mode is not accessible when the device is executing an Embedded Program or embedded Erase algorithm.

The system can also write the CFI query command when the device is in the autoselect mode. The device enters the CFI query mode, and the system can read CFI data at the addresses given in Tables 7–10. The system must write the reset command to reading array data.

For further information, please refer to the CFI Specification and CFI Publication 100. Contact your local sales office for copies of these documents.

Addresses (Word Mode)	Addresses (Byte Mode)	Data	Description
10h	20h	0051h	Query Unique ASCII string "QRY"
11h	22h	0052h	
12h	24h	0059h	
13h	26h	0002h	Primary OEM Command Set
14h	28h	0000h	
15h	2Ah	0040h	Address for Primary Extended Table
16h	2Ch	0000h	
17h	2Eh	0000h	Alternate OEM Command Set (00h = none exists)
18h	30h	0000h	
19h	32h	0000h	Address for Alternate OEM Extended Table (00h = none exists)
1Ah	34h	0000h	

Table 7. CFI Query Identification String

56 S29]L064H S7I|LxxxHxx_00Al February 25, 2004

Table 8. System Interface String

Addresses (Word Mode)	Addresses (Byte Mode)	Data	Description				
1Bh	36h	0027h	V _{CC} Min. (write/erase) D7-D4: volt, D3-D0: 100 millivolt				
1Ch	38h	0036h	V _{CC} Max. (write/erase) D7-D4: volt, D3-D0: 100 millivolt				
1Dh	3Ah	0000h	V_{PP} Min. voltage (00h = no V_{PP} pin present)				
1Eh	3Ch	0000h	V _{PP} Max. voltage (00h = no V _{PP} pin present)				
1Fh	3Eh	0003h	Typical timeout per single byte/word write 2 ^N µs				
20h	40h	0000h	Typical timeout for Min. size buffer write $2^{N} \mu s$ (00h = not supported)				
21h	42h	0009h	Typical timeout per individual block erase 2 ^N ms				
22h	44h	0000h	Typical timeout for full chip erase 2^{N} ms (00h = not supported)				
23h	46h	0005h	Max. timeout for byte/word write 2 ^N times typical				
24h	48h	0000h	Max. timeout for buffer write 2 ^N times typical				
25h	4Ah	0004h	Max. timeout per individual block erase 2 ^N times typical				
26h	4Ch	0000h	Max. timeout for full chip erase 2^{N} times typical (00h = not supported)				

Table 9. Device Geometry Definition

Addresses (Word Mode)	Addresses (Byte Mode)	Data	Description				
27h	4Eh	0017h	Device Size = 2 ^N byte				
28h	50h	0002h	Flash Device Interface description (refer to CFI publication 100)				
29h	52h	0000h					
2Ah	54h	0000h	Max. number of byte in multi-byte write = 2^N (00h = not supported)				
2Bh	56h	0000h					
2Ch	58h	0003h	Number of Erase Block Regions within device				
2Dh	5Ah	0007h	Erase Block Region 1 Information (refer to the CFI specification or CFI publication 100)				
2Eh	5Ch	0000h					
2Fh	5Eh	0020h					
30h	60h	0000h					
31h	62h	007Dh	Erase Block Region 2 Information (refer to the CFI specification or CFI publication 100)				
32h	64h	0000h					
33h	66h	0000h					
34h	68h	0001h					
35h	6Ah	0007h	Erase Block Region 3 Information (refer to the CFI specification or CFI publication 100)				
36h	6Ch	0000h					
37h	6Eh	0020h					
38h	70h	0000h					
39h	72h	0000h	Erase Block Region 4 Information (refer to the CFI specification or CFI publication 100)				
3Ah	74h	0000h					
3Bh	76h	0000h					
3Ch	78h	0000h					

Table 10. Primary Vendor-Specific Extended Query

Addresses (Word Mode)	Addresses (Byte Mode)	Data	Description					
40h 41h 42h	80h 82h 84h	0050h 0052h 0049h	Query-unique ASCII string "PRI"					
43h	86h	0031h	Major version number, ASCII (reflects modifications to the silicon)					
44h	88h	0033h	Minor version number, ASCII (reflects modifications to the CFI table)					
45h	8Ah	000Ch	Address Sensitive Unlock (Bits 1-0) 0 = Required, 1 = Not Required Silicon Revision Number (Bits 7-2)					
46h	8Ch	0002h	Erase Suspend 0 = Not Supported, 1 = To Read Only, 2 = To Read & Write					
47h	8Eh	0001h	Sector Protect 0 = Not Supported, X = Number of sectors in per group					
48h	90h	0001h	Sector Temporary Unprotect 00 = Not Supported, 01 = Supported					
49h	92h	0004h	Sector Protect/Unprotect scheme 01 = 29F040 mode, 02 = 29F016 mode, 03 = 29F400, 04 = 29LV80 mode					
4Ah	94h	0077h	Simultaneous Operation 00 = Not Supported, X = Number of Sectors (excluding Bank 1)					
4Bh	96h	0000h	Burst Mode Type 00 = Not Supported, 01 = Supported					
4Ch	98h	0000h	Page Mode Type 00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page					
4Dh	9Ah	0085h	ACC (Acceleration) Supply Minimum 00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV					
4Eh	9Ch	0095h	ACC (Acceleration) Supply Maximum 00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV					
4Fh	9Eh	0001h	Top/Bottom Boot Sector Flag 00h = Uniform device, 01h = 8 x 8 Kbyte Sectors, Top And Bottom Boot with Write Protect, 02h = Bottom Boot Device, 03h = Top Boot Device, 04h= Both Top and Bottom					
50h	A0h	0001h	Program Suspend 0 = Not supported, 1 = Supported					
57h	AEh	0004h	Bank Organization 00 = Data at 4Ah is zero, X = Number of Banks					
58h	B0h	0017h	Bank 1 Region Information X = Number of Sectors in Bank 1					
59h	B2h	0030h	Bank 2 Region Information X = Number of Sectors in Bank 2					
5Ah	B4h	0030h	Bank 3 Region Information X = Number of Sectors in Bank 3					
5Bh	B6h	0017h	Bank 4 Region Information X = Number of Sectors in Bank 4					

58 \$29JL064H \$71JLxxxHxx_00Al February 25, 2004

Command Definitions

Writing specific address and data commands or sequences into the command register initiates device operations. Table 11 defines the valid register command sequences. Writing incorrect address and data values or writing them in the improper sequence may place the device in an unknown state. A reset command is then required to return the device to reading array data.

All addresses are latched on the falling edge of WE# or CE#, whichever happens later. All data is latched on the rising edge of WE# or CE#, whichever happens first. Refer to the "AC Characteristics" section for timing diagrams.

Reading Array Data

The device is automatically set to reading array data after device power-up. No commands are required to retrieve data. Each bank is ready to read array data after completing an Embedded Program or Embedded Erase algorithm.

After the device accepts an Erase Suspend command, the corresponding bank enters the erase-suspend-read mode, after which the system can read data from any non-erase-suspended sector within the same bank. The system can read array data using the standard read timing, except that if it reads at an address within erase-suspended sectors, the device outputs status data. After completing a programming operation in the Erase Suspend mode, the system may once again read array data with the same exception. See the "Erase Suspend/Erase Resume Commands" section section for more information.

The system *must* issue the reset command to return a bank to the read (or erase-suspend-read) mode if DQ5 goes high during an active program or erase operation, or if the bank is in the autoselect mode. See the next section, "Reset Command" section, for more information.

See also "Requirements for Reading Array Data" section in the "Device Bus Operations" section section for more information. The "Read-Only Operations" section table provides the read parameters, and 14 shows the timing diagram.

Reset Command

Writing the reset command resets the banks to the read or erase-suspend-read mode. Address bits are don't cares for this command.

The reset command may be written between the sequence cycles in an erase command sequence before erasing begins. This resets the bank to which the system was writing to the read mode. Once erasure begins, however, the device ignores reset commands until the operation is complete.

The reset command may be written between the sequence cycles in a program command sequence before programming begins. This resets the bank to which the system was writing to the read mode. If the program command sequence is written to a bank that is in the Erase Suspend mode, writing the reset command returns that bank to the erase-suspend-read mode. Once programming begins, however, the device ignores reset commands until the operation is complete.

The reset command may be written between the sequence cycles in an autoselect command sequence. Once in the autoselect mode, the reset command must be written to return to the read mode. If a bank entered the autoselect mode while in the Erase Suspend mode, writing the reset command returns that bank to the erase-suspend-read mode.

If DQ5 goes high during a program or erase operation, writing the reset command returns the banks to the read mode (or erase-suspend-read mode if that bank was in Erase Suspend).

Autoselect Command Sequence

The autoselect command sequence allows the host system to access the manufacturer and device codes, and determine whether or not a sector is protected. The autoselect command sequence may be written to an address within a bank that is either in the read or erase-suspend-read mode. The autoselect command may not be written while the device is actively programming or erasing in another bank.

The autoselect command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle that contains the bank address and the autoselect command. The bank then enters the autoselect mode. The system may read any number of autoselect codes without reinitiating the command sequence.

Table 11 shows the address and data requirements. To determine sector protection information, the system must write to the appropriate bank address (BA) and sector address (SA). Table 3 shows the address range and bank number associated with each sector.

The system must write the reset command to return to the read mode (or erase-suspend-read mode if the bank was previously in Erase Suspend).

Enter SecSi™ Sector/Exit SecSi Sector Command Sequence

The SecSi Sector region provides a secured data area containing a random, sixteen-byte electronic serial number (ESN). The system can access the SecSi Sector region by issuing the three-cycle Enter SecSi Sector command sequence. The device continues to access the SecSi Sector region until the system issues the four-cycle Exit SecSi Sector command sequence. The Exit SecSi Sector command sequence returns the device to normal operation. The SecSi Sector is not accessible when the device is executing an Embedded Program or embedded Erase algorithm. Table 11 shows the address and data requirements for both command sequences. See also "SecSi™ (Secured Silicon) Sector Flash Memory Region" for further information. Note that the ACC function and unlock bypass modes are not available when the SecSi Sector is enabled.

Byte/Word Program Command Sequence

The system may program the device by word or byte, depending on the state of the BYTE# pin. Programming is a four-bus-cycle operation. The program command sequence is initiated by writing two unlock write cycles, followed by the program set-up command. The program address and data are written next, which in turn initiate the Embedded Program algorithm. The system is *not* required to provide further controls or timings. The device automatically provides internally generated program pulses and verifies the programmed cell margin. Table 11 shows the address and data requirements for the byte program command sequence.

When the Embedded Program algorithm is complete, that bank then returns to the read mode and addresses are no longer latched. The system can determine the status of the program operation by using DQ7, DQ6, or RY/BY#. Refer to the "Write Operation Status" section section for information on these status bits.

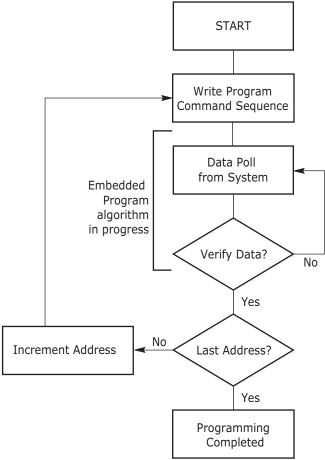
Any commands written to the device during the Embedded Program Algorithm are ignored. Note that a **hardware reset** immediately terminates the program

S29]L064H S7I]LxxxHxx_00Al February 25, 2004

operation. The program command sequence should be reinitiated once that bank has returned to the read mode, to ensure data integrity. Note that the SecSi Sector, autoselect, and CFI functions are unavailable when a program operation is in progress.

Programming is allowed in any sequence and across sector boundaries. **A bit cannot be programmed from "0" back to a "1."** Attempting to do so may cause that bank to set DQ5 = 1, or cause the DQ7 and DQ6 status bits to indicate the operation was successful. However, a succeeding read will show that the data is still "0." Only erase operations can convert a "0" to a "1."

Unlock Bypass Command Sequence


The unlock bypass feature allows the system to program bytes or words to a bank faster than using the standard program command sequence. The unlock bypass command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle containing the unlock bypass command, 20h. That bank then enters the unlock bypass mode. A two-cycle unlock bypass program command sequence is all that is required to program in this mode. The first cycle in this sequence contains the unlock bypass program command, A0h; the second cycle contains the program address and data. Additional data is programmed in the same manner. This mode dispenses with the initial two unlock cycles required in the standard program command sequence, resulting in faster total programming time. Table 11 shows the requirements for the command sequence.

During the unlock bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset commands are valid. To exit the unlock bypass mode, the system must issue the two-cycle unlock bypass reset command sequence. (See Table 12).

The device offers accelerated program operations through the WP#/ACC pin. When the system asserts V_{HH} on the WP#/ACC pin, the device automatically enters the Unlock Bypass mode. The system may then write the two-cycle Unlock Bypass program command sequence. The device uses the higher voltage on the WP#/ACC pin to accelerate the operation. Note that the WP#/ACC pin must not be at V_{HH} for any operation other than accelerated programming, or device damage may result. In addition, the WP#/ACC pin must not be left floating or unconnected; inconsistent behavior of the device may result.

4 illustrates the algorithm for the program operation. Refer to the "Erase and Program Operations" section table in the AC Characteristics section for parameters, and Figure 18 for timing diagrams.

Note: See Table 11 for program command sequence.

Figure 4. Program Operation

Chip Erase Command Sequence

Chip erase is a six bus cycle operation. The chip erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock write cycles are then followed by the chip erase command, which in turn invokes the Embedded Erase algorithm. The device does *not* require the system to preprogram prior to erase. The Embedded Erase algorithm automatically preprograms and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations. Table 11 shows the address and data requirements for the chip erase command sequence.

When the Embedded Erase algorithm is complete, that bank returns to the read mode and addresses are no longer latched. The system can determine the status of the erase operation by using DQ7, DQ6, DQ2, or RY/BY#. Refer to the "Write Operation Status" section section for information on these status bits.

Any commands written during the chip erase operation are ignored. However, note that a **hardware reset** immediately terminates the erase operation. If that occurs, the chip erase command sequence should be reinitiated once that bank has returned to reading array data, to ensure data integrity. Note that the SecSi Sector, autoselect, and CFI functions are unavailable when an erase operation is in progress.

62 S29]L064H S7I|LxxxHxx_00Al February 25, 2004

5 illustrates the algorithm for the erase operation. Refer to the "Erase and Program Operations" section tables in the AC Characteristics section for parameters, and Figure 20 section for timing diagrams.

Sector Erase Command Sequence

Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock cycles are written, and are then followed by the address of the sector to be erased, and the sector erase command. Table 11 shows the address and data requirements for the sector erase command sequence.

The device does *not* require the system to preprogram prior to erase. The Embedded Erase algorithm automatically programs and verifies the entire sector for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations.

After the command sequence is written, a sector erase time-out of $80~\mu s$ occurs. During the time-out period, additional sector addresses and sector erase commands may be written. Loading the sector erase buffer may be done in any sequence, and the number of sectors may be from one sector to all sectors. The time between these additional cycles must be less than $80~\mu s$, otherwise erasure may begin. Any sector erase address and command following the exceeded time-out may or may not be accepted. It is recommended that processor interrupts be disabled during this time to ensure all commands are accepted. The interrupts can be re-enabled after the last Sector Erase command is written. **Any command other than Sector Erase or Erase Suspend during the time-out period resets that bank to the read mode.** The system must rewrite the command sequence and any additional addresses and commands.

The system can monitor DQ3 to determine if the sector erase timer has timed out (See the section on DQ3: Sector Erase Timer.). The time-out begins from the rising edge of the final WE# or CE# pulse (first rising edge) in the command sequence.

When the Embedded Erase algorithm is complete, the bank returns to reading array data and addresses are no longer latched. Note that while the Embedded Erase operation is in progress, the system can read data from the non-erasing bank. The system can determine the status of the erase operation by reading DQ7, DQ6, DQ2, or RY/BY# in the erasing bank. Refer to the "Write Operation Status" section section for information on these status bits.

Once the sector erase operation has begun, only the Erase Suspend command is valid. All other commands are ignored. However, note that a **hardware reset** immediately terminates the erase operation. If that occurs, the sector erase command sequence should be reinitiated once that bank has returned to reading array data, to ensure data integrity. Note that the SecSi Sector, autoselect, and CFI functions are unavailable when an erase operation is in progress.

5 illustrates the algorithm for the erase operation. Refer to the "Erase and Program Operations" section tables in the AC Characteristics section for parameters, and Figure 20 section for timing diagrams.

Notes:

- 1. See Table 11 for erase command sequence.
- 2. See the section on DQ3 for information on the sector erase timer.

Figure 5. Erase Operation

Erase Suspend/Erase Resume Commands

The Erase Suspend command, B0h, allows the system to interrupt a sector erase operation and then read data from, or program data to, any sector not selected for erasure. The bank address is required when writing this command. This command is valid only during the sector erase operation, including the 80 μ s time-out period during the sector erase command sequence. The Erase Suspend command is ignored if written during the chip erase operation or Embedded Program algorithm. The bank address must contain one of the sectors currently selected for erase.

When the Erase Suspend command is written during the sector erase operation, the device requires a maximum of 20 μ s to suspend the erase operation. However, when the Erase Suspend command is written during the sector erase time-out, the device immediately terminates the time-out period and suspends the erase operation.

After the erase operation has been suspended, the bank enters the erase-suspend-read mode. The system can read data from or program data to any sector not selected for erasure. (The device "erase suspends" all sectors selected for erasure.) Reading at any address within erase-suspended sectors produces status information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2 together, to determine if a sector is actively erasing or is erase-suspended. Refer to the "Write Operation Status" section section for information on these status bits.

After an erase-suspended program operation is complete, the bank returns to the erase-suspend-read mode. The system can determine the status of the program

64 \$29]L064H \$71]LxxxHxx_00Al February 25, 2004

operation using the DQ7 or DQ6 status bits, just as in the standard Byte Program operation. Refer to the "Write Operation Status" section section for more information.

In the erase-suspend-read mode, the system can also issue the autoselect command sequence. The device allows reading autoselect codes even at addresses within erasing sectors, since the codes are not stored in the memory array. When the device exits the autoselect mode, the device reverts to the Erase Suspend mode, and is ready for another valid operation. Refer to the "Autoselect Mode" section and "Autoselect Command Sequence" section sections for details.

To resume the sector erase operation, the system must write the Erase Resume command. The bank address of the erase-suspended bank is required when writing this command. Further writes of the Resume command are ignored. Another Erase Suspend command can be written after the chip has resumed erasing.

Bus Cycles (Notes 2-5) Cycles Command First Second Third Fourth Fifth Sixth Seauence Addr Data Addr Data Addr Addr Addr Data (Note 1) Addr Data Data Data Read (Note 6) 1 RA RD Reset (Note 7) XXX F0 Word 555 2AA (BA)555 4 55 Manufacturer ID AA90 (BA)X00 01 555 (BA)AAA Byte AAA Word 555 2AA (BA)555 (BA)X01 (BA)X0E (BA)X0F Device ID (Note 9) AA01 (BA)X1E Byte AAA 555 (BA)AAA (BA)X02 (BA)X1C Word 2AA (BA)555 (BA)X03 SecSi Sector Factory 555 80/ AA55 90 Protect (Note 10) 00 Byte AAA 555 (BA)AAA (BA)X06 Sector/Sector Block 555 2AA (BA)555 (SA)X02 Word 00/ Protect Verify AA 55 90 AAA 555 (BA)AAA (SA)X04 Byte (Note 11) Word 555 2AA 555 Enter SecSi Sector Region AA55 88 555 Byte AAA AAA Word 555 2AA 555 55 Exit SecSi Sector Region AA90 XXX00 555 Byte AAA AAA 555 555 Word 2AA Program ΑА 55 A0 PA PD Bvte AAA 555 AAA 555 Word 555 2AA Unlock Bypass AA55 20 AAA 555 AAA Byte Unlock Bypass Program (Note 12) XXX Α0 PA PD Unlock Bypass Reset (Note 13) 90 00 XXX XXX 555 2AA 555 555 2AA 555 Word Chip Erase AA55 AA 55 10 Byte AAA 555 AAA AAA 555 AAA Word 555 2AA 555 555 2AA 55 Sector Erase 6 AA 55 80 AA SA 30 555 Byte AAA AAA AAA 555 Erase Suspend (Note 14) BA B0 Erase Resume (Note 15) ВА 30 Word 55 CFI Query (Note 16) 1 98 Byte AA

Table II. S29JL064H Command Definitions

Legend:

X = Don't care

RA = Address of the memory location to be read.

RD = Data read from location RA during read operation.

PA = Address of the memory location to be programmed. Addresses latch on the falling edge of the WE# or CE# pulse, whichever happens later.

PD = Data to be programmed at location PA. Data latches on the rising edge of WE# or CE# pulse, whichever happens first.

SA = Address of the sector to be verified (in autoselect mode) or erased. Address bits A21–A12 uniquely select any sector. Refer to Table 3 for information on sector addresses.

BA = Address of the bank that is being switched to autoselect mode, is in bypass mode, or is being erased. A21-A19 uniquely select a bank.

Notes:

- 1. See Table 1 for description of bus operations.
- 2. All values are in hexadecimal.
- 3. Except for the read cycle and the fourth, fifth, and sixth cycle of the autoselect command sequence, all bus cycles are write cycles.
- 4. Data bits DQ15-DQ8 are don't care in command sequences, except for RD and PD.
- 5. Unless otherwise noted, address bits A21–A11 are don't cares for unlock and command cycles, unless SA or PA is required.
- 6. No unlock or command cycles required when bank is reading array data.
- 7. The Reset command is required to return to the read mode (or to the erase-suspend-read mode if previously in Erase Suspend) when a bank is in the autoselect mode, or if DQ5 goes high (while the bank is providing status information).
- 8. The fourth cycle of the autoselect command sequence is a read cycle. The system must provide the bank address to obtain the manufacturer ID, device ID, or SecSi Sector factory protect information. Data bits DQ15–DQ8 are don't care. While reading the autoselect addresses, the bank address must be the same until a reset command is given. See the "Autoselect Command Sequence" section section for more information.
- 9. The device ID must be read across the fourth, fifth, and sixth cycles.
- 10. The data is 80h for factory locked, 40h for customer locked, and 00h for not factory/customer locked.
- 11. The data is 00h for an unprotected sector/sector block and 01h for a protected sector/sector block.
- 12. The Unlock Bypass command is required prior to the Unlock Bypass Program command.
- 13. The Unlock Bypass Reset command is required to return to the read mode when the bank is in the unlock bypass mode.
- 14. The system may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The Erase Suspend command is valid only during a sector erase operation, and requires the bank address.
- 15. The Erase Resume command is valid only during the Erase Suspend mode, and requires the bank address.
- 16. Command is valid when device is ready to read array data or when device is in autoselect mode.

Write Operation Status

The device provides several bits to determine the status of a program or erase operation: DQ2, DQ3, DQ5, DQ6, and DQ7. Table 12 and the following subsections describe the function of these bits. DQ7 and DQ6 each offer a method for determining whether a program or erase operation is complete or in progress. The device also provides a hardware-based output signal, RY/BY#, to determine whether an Embedded Program or Erase operation is in progress or has been completed.

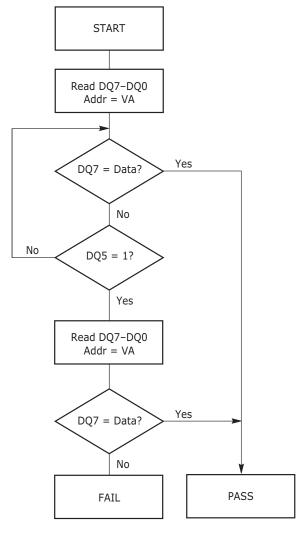
DQ7: Data# Polling

The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Program or Erase algorithm is in progress or completed, or whether a bank is in Erase Suspend. Data# Polling is valid after the rising edge of the final WE# pulse in the command sequence.

During the Embedded Program algorithm, the device outputs on DQ7 the complement of the datum programmed to DQ7. This DQ7 status also applies to programming during Erase Suspend. When the Embedded Program algorithm is complete, the device outputs the datum programmed to DQ7. The system must provide the program address to read valid status information on DQ7. If a program address falls within a protected sector, Data# Polling on DQ7 is active for approximately 1 μ s, then that bank returns to the read mode.

During the Embedded Erase algorithm, Data# Polling produces a "0" on DQ7. When the Embedded Erase algorithm is complete, or if the bank enters the Erase Suspend mode, Data# Polling produces a "1" on DQ7. The system must provide

66 S29|L064H S7||LxxxHxx 00A| February 25, 2004


an address within any of the sectors selected for erasure to read valid status information on DQ7.

After an erase command sequence is written, if all sectors selected for erasing are protected, Data# Polling on DQ7 is active for approximately $100~\mu s$, then the bank returns to the read mode. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. However, if the system reads DQ7 at an address within a protected sector, the status may not be valid.

When the system detects DQ7 has changed from the complement to true data, it can read valid data at DQ15–DQ0 (or DQ7–DQ0 for x8-only device) on the *following* read cycles. Just prior to the completion of an Embedded Program or Erase operation, DQ7 may change asynchronously with DQ15–DQ8 (DQ7–DQ0 for x8-only device) while Output Enable (OE#) is asserted low. That is, the device may change from providing status information to valid data on DQ7. Depending on when the system samples the DQ7 output, it may read the status or valid data. Even if the device has completed the program or erase operation and DQ7 has valid data, the data outputs on DQ15–DQ0 may be still invalid. Valid data on DQ15–DQ0 (or DQ7–DQ0 for x8-only device) will appear on successive read cycles.

Table 12 shows the outputs for Data# Polling on DQ7. 6 shows the Data# Polling algorithm. 22 in the "AC Characteristics" section shows the Data# Polling timing diagram.

Notes:

- 1. VA = Valid address for programming. During a sector erase operation, a valid address is any sector address within the sector being erased. During chip erase, a valid address is any non-protected sector address.
- 2. DQ7 should be rechecked even if DQ5 = "1" because DQ7 may change simultaneously with DQ5.

Figure 6. Data# Polling Algorithm

RY/BY#: Ready/Busy#

The RY/BY# is a dedicated, open-drain output pin which indicates whether an Embedded Algorithm is in progress or complete. The RY/BY# status is valid after the rising edge of the final WE# pulse in the command sequence. Since RY/BY# is an open-drain output, several RY/BY# pins can be tied together in parallel with a pull-up resistor to V_{CC} .

If the output is low (Busy), the device is actively erasing or programming. (This includes programming in the Erase Suspend mode.) If the output is high (Ready), the device is in the read mode, the standby mode, or one of the banks is in the erase-suspend-read mode.

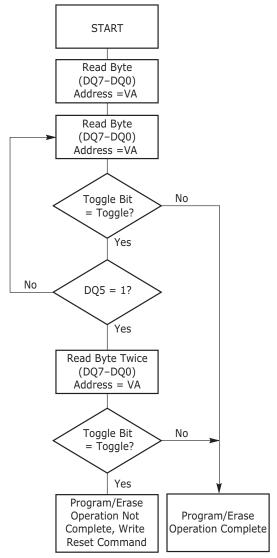
Table 12 shows the outputs for RY/BY#.

68 S29|L064H S7||LxxxHxx_00A| February 25, 2004

DQ6: Toggle Bit I

Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or complete, or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read at any address, and is valid after the rising edge of the final WE# pulse in the command sequence (prior to the program or erase operation), and during the sector erase time-out.

During an Embedded Program or Erase algorithm operation, successive read cycles to any address cause DQ6 to toggle. The system may use either OE# or CE# to control the read cycles. When the operation is complete, DQ6 stops toggling.


After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6 toggles for approximately 100 μs , then returns to reading array data. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected.

The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or is erase-suspended. When the device is actively erasing (that is, the Embedded Erase algorithm is in progress), DQ6 toggles. When the device enters the Erase Suspend mode, DQ6 stops toggling. However, the system must also use DQ2 to determine which sectors are erasing or erase-suspended. Alternatively, the system can use DQ7 (see the subsection on "DQ7: Data# Polling" section).

If a program address falls within a protected sector, DQ6 toggles for approximately 1 μs after the program command sequence is written, then returns to reading array data.

DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embedded Program algorithm is complete.

Note: The system should recheck the toggle bit even if DQ5 = "1" because the toggle bit may stop toggling as DQ5 changes to "1." See the subsections on DQ6 and DQ2 for more information.

Figure 7. Toggle Bit Algorithm

DQ2: Toggle Bit II

The "Toggle Bit II" on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing (that is, the Embedded Erase algorithm is in progress), or whether that sector is erase-suspended. Toggle Bit II is valid after the rising edge of the final WE# pulse in the command sequence.

DQ2 toggles when the system reads at addresses within those sectors that have been selected for erasure. (The system may use either OE# or CE# to control the read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or is erase-suspended. DQ6, by comparison, indicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected for erasure. Thus, both status bits are required for sector and mode information. Refer to Table 12 to compare outputs for DQ2 and DQ6.

7 shows the toggle bit algorithm in flowchart form, and the section "DQ2: Toggle Bit II" explains the algorithm. See also the "DQ6: Toggle Bit I" section subsection.

70 \$29]L064H \$71|LxxxHxx_00Al February 25, 2004

23 shows the toggle bit timing diagram. 24 shows the differences between DQ2 and DQ6 in graphical form.

Reading Toggle Bits DQ6/DQ2

Refer to 7 for the following discussion. Whenever the system initially begins reading toggle bit status, it must read DQ15–DQ0 (or DQ7–DQ0 for x8-only device) at least twice in a row to determine whether a toggle bit is toggling. Typically, the system would note and store the value of the toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit with the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can read array data on DQ15–DQ0 (or DQ7–DQ0 for x8-only device) on the following read cycle.

However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the system also should note whether the value of DQ5 is high (see the section on DQ5). If it is, the system should then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling, the device has successfully completed the program or erase operation. If it is still toggling, the device did not completed the operation successfully, and the system must write the reset command to return to reading array data.

The remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5 has not gone high. The system may continue to monitor the toggle bit and DQ5 through successive read cycles, determining the status as described in the previous paragraph. Alternatively, it may choose to perform other system tasks. In this case, the system must start at the beginning of the algorithm when it returns to determine the status of the operation (top of 7).

DQ5: Exceeded Timing Limits

DQ5 indicates whether the program or erase time has exceeded a specified internal pulse count limit. Under these conditions DQ5 produces a "1," indicating that the program or erase cycle was not successfully completed.

The device may output a "1" on DQ5 if the system tries to program a "1" to a location that was previously programmed to "0." **Only an erase operation can change a "0" back to a "1."** Under this condition, the device halts the operation, and when the timing limit has been exceeded, DQ5 produces a "1."

Under both these conditions, the system must write the reset command to return to the read mode (or to the erase-suspend-read mode if a bank was previously in the erase-suspend-program mode).

DO3: Sector Erase Timer

After writing a sector erase command sequence, the system may read DQ3 to determine whether or not erasure has begun. (The sector erase timer does not apply to the chip erase command.) If additional sectors are selected for erasure, the entire time-out also applies after each additional sector erase command. When the time-out period is complete, DQ3 switches from a "0" to a "1." If the time between additional sector erase commands from the system can be assumed to be less than 50 μ s, the system need not monitor DQ3. See also the "Sector Erase Command Sequence" section section.

After the sector erase command is written, the system should read the status of DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure that the device has accepted the command sequence, and then read DQ3. If DQ3 is "1," the Embedded Erase

algorithm has begun; all further commands (except Erase Suspend) are ignored until the erase operation is complete. If DQ3 is "0," the device will accept additional sector erase commands. To ensure the command has been accepted, the system software should check the status of DQ3 prior to and following each subsequent sector erase command. If DQ3 is high on the second status check, the last command might not have been accepted.

Table 12 shows the status of DQ3 relative to the other status bits.

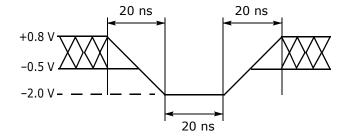
Table 12. Write Operation Status

Status			DQ7 (Note 2)	DQ6	DQ5 (Note I)	DQ3	DQ2 (Note 2)	RY/BY#
Standard	Embedded Program Algorithm		DQ7#	Toggle	0	N/A	No toggle	0
Mode	Embedded Erase Algorithm		0	Toggle	0	1	Toggle	0
Erase Suspend Mode	Erase-Suspend-	Erase Suspended Sector	1	No toggle	0	N/A	Toggle	1
		Non-Erase Suspended Sector	Data	Data	Data	Data	Data	1
	Erase-Suspend-Program		DQ7#	Toggle	0	N/A	N/A	0

Notes:

- 1. DQ5 switches to '1' when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits. Refer to the section on DQ5 for more information.
- 2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.
- 3. When reading write operation status bits, the system must always provide the bank address where the Embedded Algorithm is in progress. The device outputs array data if the system addresses a non-busy bank.

72 \$29]L064H *\$71]LxxxHxx_00Al February 25, 2004*


Absolute Maximum Ratings

Storage Temperature
Plastic Packages
Ambient Temperature with Power Applied
Voltage with Respect to Ground
V_{CC} (Note 1)
OE# and RESET#
(Note 2)0.5 V to +12.5 V
WP#/ACC0.5 V to +10.5 V
All other pins (Note 1)
Output Short Circuit Current (Note 3)

Notes:

- 1. Minimum DC voltage on input or I/O pins is -0.5 V. During voltage transitions, input or I/O pins may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input or I/O pins is V_{CC} +0.5 V. See Figure 8. During voltage transitions, input or I/O pins may overshoot to V_{CC} +2.0 V for periods up to 20 ns. See Figure 9.
- 2. Minimum DC input voltage on pins OE#, RESET#, and WP#/ACC is -0.5 V. During voltage transitions, OE#, WP#/ACC, and RESET# may overshoot V_{SS} to -2.0 V for periods of up to 20 ns. See Figure 8. Maximum DC input voltage on WP#/ACC is +9.5 V which may overshoot to +12.0 V for periods up to 20 ns.
- 3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

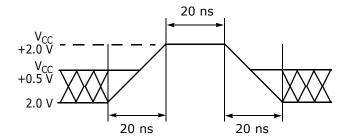


Figure 8. Maximum Negative Overshoot Waveform

quaranteed.

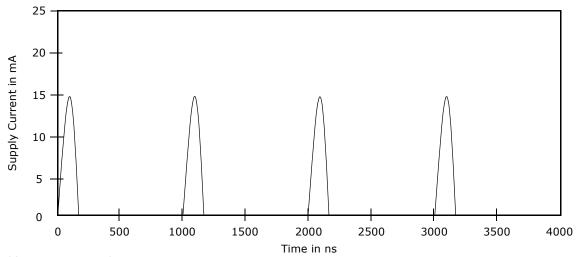
Figure 9. Maximum Positive Overshoot Waveform

OPERATING RANGES

DC Characteristics

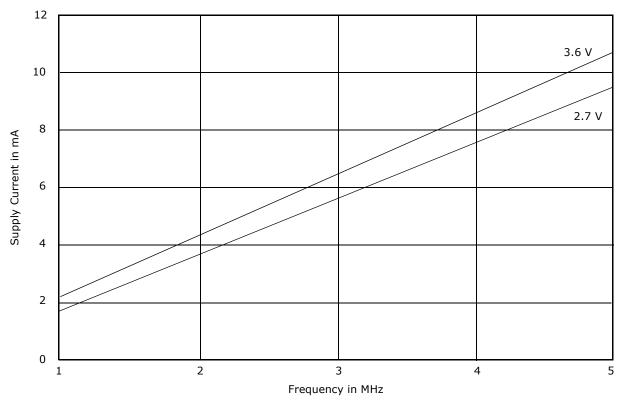
Table 13. CMOS Compatible

Parameter Symbol	Parameter Description	Test Condition	ıs	Min	Тур	Max	Unit
I _{LI}	Input Load Current	$V_{IN} = V_{SS}$ to V_{CC} , $V_{CC} = V_{CC \text{ max}}$				±1.0	μΑ
I _{LIT}	OE# and RESET# Input Load Current	$V_{CC} = V_{CC \text{ max}}$, OE# = OE# or RESET# = 12.				35	μΑ
I_{LO}	Output Leakage Current	$V_{OUT} = V_{SS}$ to V_{CC} , $V_{CC} = V_{CC \text{ max}}$, OE# =				±1.0	μΑ
I _{LR}	Reset Leakage Current	$V_{CC} = V_{CC \text{ max}}$; RESI 12.5 V	T# =			35	μΑ
		$CE# = V_{IL}$, $OE# = V_{IH}$,	5 MHz		10	16	
I _{CC1}	V _{CC} Active Read Current	Byte Mode	1 MHz		2	4	mA
<u>-</u> CC1	(Notes 1, 2)	$CE\# = V_{IL}, OE\# =$	5 MHz		10	16	
		V _{IH} , Word Mode	1 MHz		2	4	
I _{CC2}	V _{CC} Active Write Current (Notes 2, 3)	$CE\# = V_{IL}$, $OE\# = V_{IH}$,	$WE# = V_{IL}$		15	30	mA
I _{CC3}	V _{CC} Standby Current (Note 2)	CE#, RESET# = $V_{CC} \pm$	0.3 V		0.2	5	μΑ
I _{CC4}	V _{CC} Reset Current (Note 2)	RESET# = $V_{SS} \pm 0.3 \text{ V}$			0.2	5	μΑ
I _{CC5}	Automatic Sleep Mode (Notes 2, 4)	$V_{IH} = V_{CC} \pm 0.3 \text{ V};$ $V_{IL} = V_{SS} \pm 0.3 \text{ V}$			0.2	5	μΑ
т	V _{CC} Active Read-While-Program	CF# \/ OF# \/	Byte		21	45	A
I_{CC6}	Current (Notes 1, 2)	$CE\# = V_{IL}, OE\# = V_{IH}$	Word		21	45	mA
т	V _{CC} Active Read-While-Erase	CF# \/ OF# \/	Byte		21	45	A
I _{CC7}	Current (Notes 1, 2)	$CE\# = V_{IL}, OE\# = V_{IH}$	Word		21	45	- mA
I _{CC8}	V _{CC} Active Program-While-Erase- Suspended Current (Notes 2, 5)	$CE\# = V_{IL}$, $OE\# = V_{IH}$			17	35	mA
V _{IL}	Input Low Voltage			-0.5		0.8	V
V _{IH}	Input High Voltage			0.7 x V _{CC}		$V_{CC} + 0.3$	V
V _{HH}	Voltage for WP#/ACC Sector Protect/Unprotect and Program Acceleration	V _{CC} = 3.0 V ± 10%		8.5		9.5	V
V _{ID}	Voltage for Autoselect and Temporary Sector Unprotect	V _{CC} = 3.0 V ± 10%		11.5		12.5	V
V _{OL}	Output Low Voltage	I_{OL} = 2.0 mA, V_{CC} = $V_{CC min}$				0.45	V
V _{OH1}	Output High Voltage	$I_{OH} = -2.0 \text{ mA}, V_{CC} = V_{CC \text{ min}}$		0.85 V _{CC}			V
V _{OH2}	Output High Voltage	$I_{OH} = -100 \mu A, V_{CC} =$	V _{CC min}	V _{CC} -0.4			
V _{LKO}	Low V _{CC} Lock-Out Voltage (Note 5)			2.3		2.5	V


Notes:

- 1. The I_{CC} current listed is typically less than 2 mA/MHz, with OE# at V_{IH} .
- 2. Maximum I_{CC} specifications are tested with $V_{CC} = V_{CC} max$.
- 3. I_{CC} active while Embedded Erase or Embedded Program is in progress.
- 4. Automatic sleep mode enables the low power mode when addresses remain stable for t_{ACC} + 30 ns. Typical sleep mode current is 200 nA.
- 5. Not 100% tested.

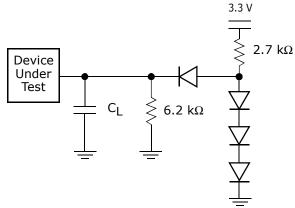
74 \$29]L064H \$71]LxxxHxx_00Al February 25, 2004



Zero-Power Flash

Note: Addresses are switching at 1 MHz

Figure 10. I_{CCI} Current vs. Time (Showing Active and Automatic Sleep Currents)



Note: $T = 25 \times C$

Figure II. Typical ICCI vs. Frequency

Test Conditions

Note: Diodes are IN3064 or equivalent

Figure I2. Test Setup

Table 14. Test Specifications

Test Condition	All Speeds	Unit
Output Load	1 TTL gate	
Output Load Capacitance, C _L (including jig capacitance)	30	pF
Input Rise and Fall Times	5	ns
Input Pulse Levels	0.0-3.0	V
Input timing measurement reference levels	1.5	V
Output timing measurement reference levels	1.5	V

Switching Waveforms

Table I5. Key To Switching Waveforms

WAVEFORM	INPUTS	OUTPUTS			
	Steady				
	Cha	anging from H to L			
_////	Cha	anging from L to H			
	Don't Care, Any Change Permitted	Changing, State Unknown			
\longrightarrow \longleftarrow	Does Not Apply	Center Line is High Impedance State (High Z)			

Figure I3. Input Waveforms and Measurement Levels

76 S29JL064H S7IJLxxxHxx_00Al February 25, 2004

AC Characteristics

Read-Only Operations

Parameter						Spe	eed Opti	ons	
JEDEC	Std.	Description		Test Setup		55	70	85	Unit
t _{AVAV}	t _{RC}	Read Cycle Time (Note 1)			Min	55	70	85	ns
t _{AVQV}	t _{ACC}	Address to Output Delay	Address to Output Delay		Max	55	70	85	ns
t _{ELQV}	t _{CE}	Chip Enable to Output Delay	Chip Enable to Output Delay		Max	55	70	85	ns
t _{GLQV}	t _{OE}	Output Enable to Output Dela	Output Enable to Output Delay		Max	25	30	40	ns
t _{EHQZ}	t _{DF}	Chip Enable to Output High 2	(Notes 1, 3)		Max	16			ns
t _{GHQZ}	t _{DF}	Output Enable to Output High	n Z (Notes 1, 3)		Max		16		ns
t _{AXQX}	t _{OH}	Output Hold Time From Addr Whichever Occurs First	esses, CE# or OE#,		Min	0			ns
		Output Enable Hold Time	Read		Min 0			ns	
	t _{OEH}	Output Enable Hold Time (Note 1)	Toggle and Data# Polling		Min	5	1	.0	ns

Notes:

- 1. Not 100% tested.
- 2. See 12 and Table 14 for test specifications
- 3. Measurements performed by placing a 50 ohm termination on the data pin with a bias of $V_{CC}/2$. The time from OE# high to the data bus driven to $V_{CC}/2$ is taken as t_{DF}

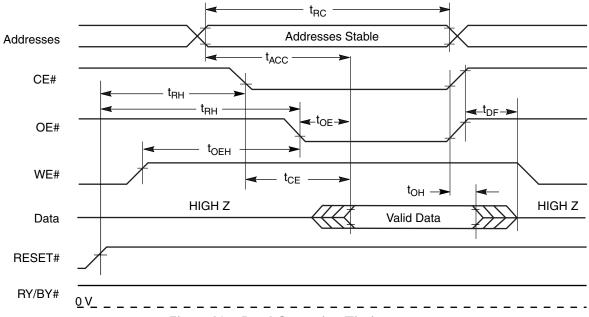


Figure 14. Read Operation Timings

Hardware Reset (RESET#)

Parameter					
JEDEC	Std	Description		All Speed Options	Unit
	t _{Ready}	RESET# Pin Low (During Embedded Algorithms) to Read Mode (See Note)	Max	20	μs
	t _{Ready}	RESET# Pin Low (NOT During Embedded Algorithms) to Read Mode (See Note)	Max	500	ns
	t _{RP}	RESET# Pulse Width	Min	500	ns
	t _{RH}	Reset High Time Before Read (See Note)	Min	50	ns
	t _{RPD}	RESET# Low to Standby Mode	Min	20	μs
	t _{RB}	RY/BY# Recovery Time	Min	0	ns

Note: Not 100% tested.

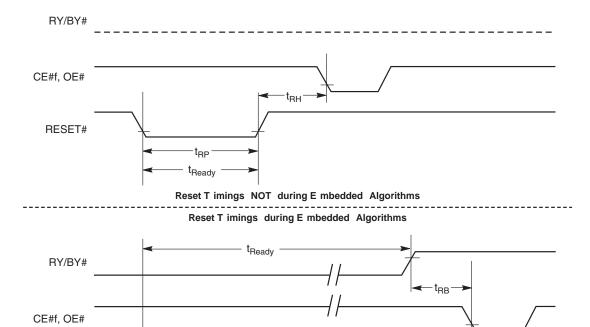


Figure I5. Reset Timings

Word/Byte Configuration (BYTE#)

RESET#

Par	ameter			Speed Options		ıs	
JEDEC	Std.	Description		55 70 85			Unit
	t _{ELFL/} t _{ELFH}	CE# to BYTE# Switching Low or High	Max	5		ns	
	t _{FLQZ}	BYTE# Switching Low to Output HIGH Z	Max	16		ns	
	t _{FHQV}	BYTE# Switching High to Output Active	Min	55	70	85	ns

78 S29JL064H S7IJLxxxHxx_00Al February 25, 2004

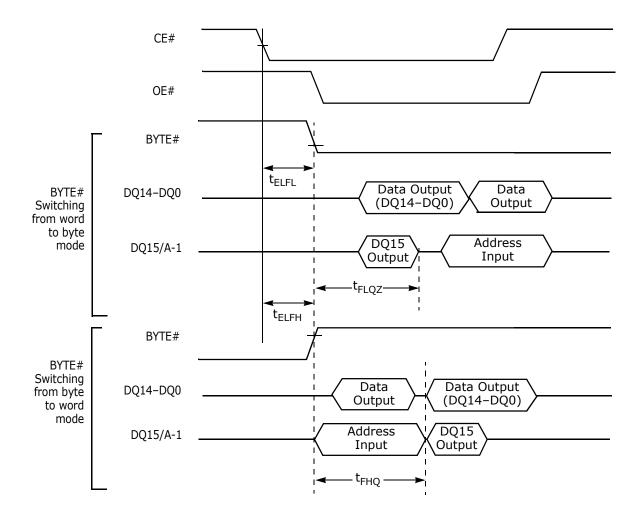
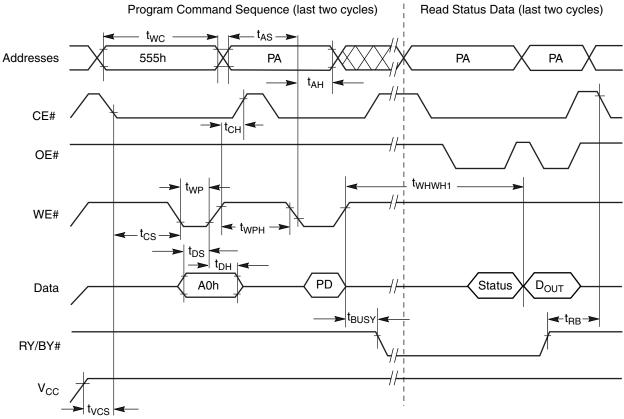


Figure I6. BYTE# Timings for Read Operations

Note: Refer to the Erase/Program Operations table for t_{AS} and t_{AH} specifications.

Figure 17. BYTE# Timings for Write Operations

Erase and Program Operations


Parameter					s	peed Optio	ons	
JEDEC	Std	Description			55	70	85	Unit
t _{AVAV}	t _{WC}	Write Cycle Time (Note 1)	Write Cycle Time (Note 1)		55	70	85	ns
t _{AVWL}	t _{AS}	Address Setup Time		Min		0		ns
	t _{ASO}	Address Setup Time to OE# low during tog polling	gle bit	Min		15		ns
t_{WLAX}	t _{AH}	Address Hold Time		Min	30	40	45	ns
	t _{AHT}	Address Hold Time From CE# or OE# high during toggle bit polling		Min		0		ns
t _{DVWH}	t _{DS}	Data Setup Time		Min	30	40	45	ns
t _{WHDX}	t _{DH}	Data Hold Time		Min		0		ns
	t _{OEPH}	Output Enable High during toggle bit polling	g	Min		20		ns
t _{GHWL}	t _{GHWL}	Read Recovery Time Before Write (OE# High to WE# Low) Min 0			ns			
t _{ELWL}	t _{CS}	CE# Setup Time		Min		0		ns
t _{WHEH}	t _{CH}	CE# Hold Time		Min		0		ns
t _{WLWH}	t _{WP}	Write Pulse Width		Min	25	30	35	ns
t _{WHDL}	t _{WPH}	Write Pulse Width High		Min	25	30	30	ns
	t _{SR/W}	Latency Between Read and Write Operation	ns	Min		0		ns
L	_	Dragungaring Operation (Note 2)	Byte	Тур		5		
t _{WHWH1}	t _{WHWH1}	Programming Operation (Note 2)	Word	Тур		7		μs
t _{WHWH1}	t _{WHWH1}	Accelerated Programming Operation, Word or Byte (Note 2) Typ			4		μs	
t _{WHWH2}	t _{WHWH2}	Sector Erase Operation (Note 2)		Тур		0.4		sec
	t _{VCS}	V _{CC} Setup Time (Note 1)	V _{CC} Setup Time (Note 1)			50		μs
	t _{RB}	Write Recovery Time from RY/BY#		Min		0		ns
	t _{BUSY}	Program/Erase Valid to RY/BY# Delay		Max		90		ns

Notes:

- 1. Not 100% tested.
- 2. See the "Erase And Programming Performance" section for more information.

80 \$29JL064H \$71JLxxxHxx_00Al February 25, 2004

Notes:

- 1. $PA = program \ address, \ PD = program \ data, \ D_{OUT}$ is the true data at the program address.
- 2. Illustration shows device in word mode

Figure 18. Program Operation Timings

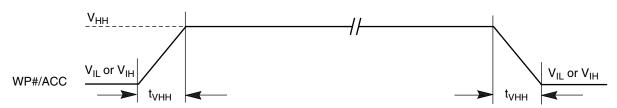
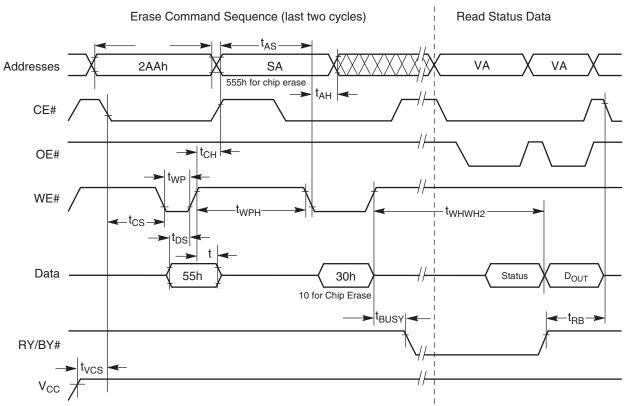



Figure 19. Accelerated Program Timing Diagram

Notes:

- 1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see "Write Operation Status".
- 2. These waveforms are for the word mode.

Figure 20. Chip/Sector Erase Operation Timings

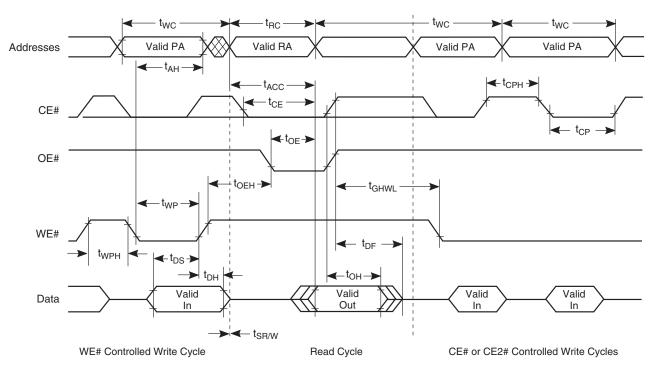
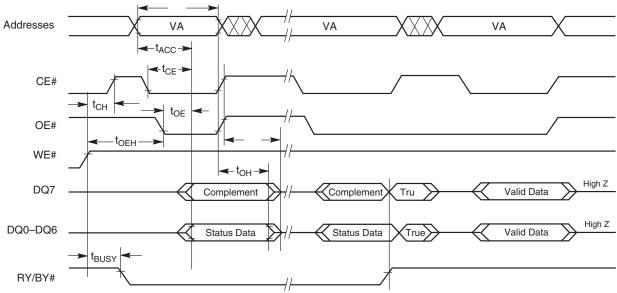
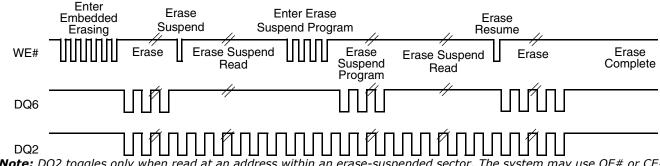



Figure 21. Back-to-back Read/Write Cycle Timings

82 \$29JL064H \$71JLxxxHxx_00Al February 25, 2004

Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data read cycl


Figure 22. Data# Polling Timings (During Embedded Algorithms)

Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read cycle, and array data read cycle

Figure 23. Toggle Bit Timings (During Embedded Algorithms)

Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to toggle DQ2 and DQ6.

Figure 24. DQ2 vs. DQ6

Temporary Sector Unprotect

Parameter					
JEDEC	Std	Description		All Speed Options	Unit
	t_{VIDR}	V _{ID} Rise and Fall Time (see Note)	Min	500	ns
	t _{VHH}	V _{HH} Rise and Fall Time (see Note)	Min	250	ns
	t _{RSP}	RESET# Setup Time for Temporary Sector Unprotect	Min	4	μs
	t _{RRB}	RESET# Hold Time from RY/BY# High for Temporary Sector Unprotect	Min	4	μs

Note: Not 100% tested.

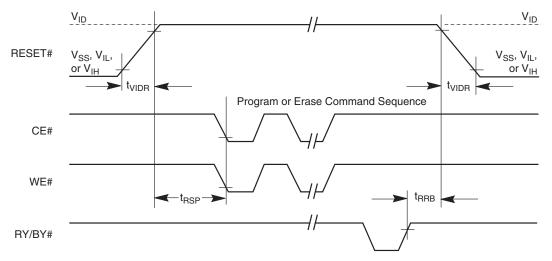


Figure 25. Temporary Sector Unprotect Timing Diagram

84 \$29JL064H \$71JLxxxHxx_00Al February 25, 2004

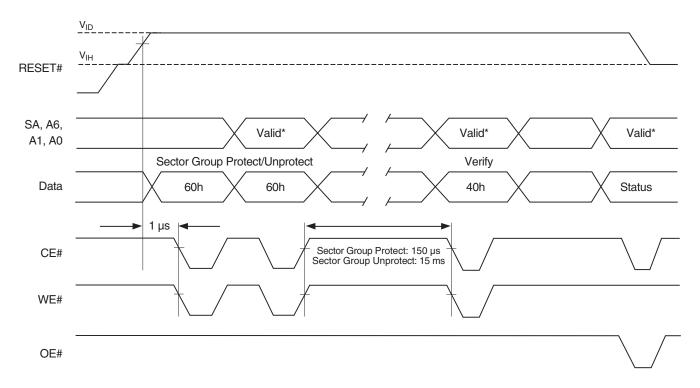
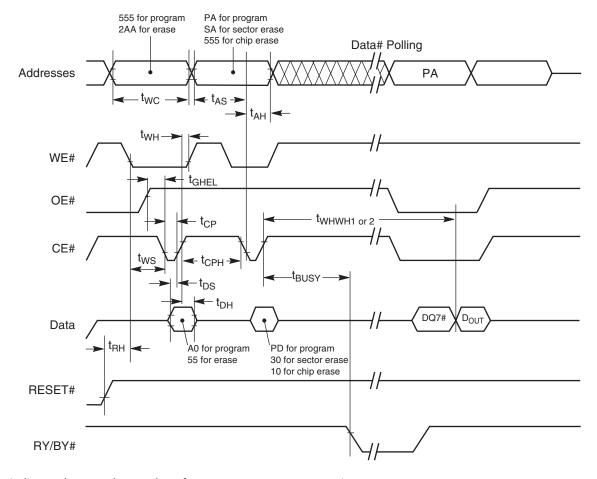


Figure 26. Sector/Sector Block Protect and Unprotect Timing Diagram

Alternate CE# Controlled Erase and Program Operations


Parameter			Speed Options		ns			
JEDEC	Std.	Description			55	70	85	Unit
t _{AVAV}	t _{WC}	Write Cycle Time (Note 1)		Min	55	70	85	ns
t _{AVWL}	t _{AS}	Address Setup Time		Min		0		ns
t _{ELAX}	t _{AH}	Address Hold Time		Min	30	40	45	ns
t _{DVEH}	t _{DS}	Data Setup Time		Min	30	40	45	ns
t _{EHDX}	t _{DH}	Data Hold Time		Min		0		ns
t _{GHEL}	t _{GHEL}	Read Recovery Time Before Write (OE# High to WE# Low)			0			ns
t _{WLEL}	t _{WS}	WE# Setup Time		Min		0		ns
t _{EHWH}	t _{WH}	WE# Hold Time		Min		0		ns
t _{ELEH}	t _{CP}	CE# Pulse Width		Min	25	40	45	ns
t _{EHEL}	t _{CPH}	CE# Pulse Width High		Min	25	3	0	ns
ı		Programming Operation	Byte	Тур	5			
t _{WHWH1}	t _{WHWH1}	Note 2) Word		Тур		7		μs
t _{WHWH1}	t _{WHWH1}	Accelerated Programming Operation, Word or Byte (Note 2)		Тур		4		μs
t _{WHWH2}	t _{WHWH2}	Sector Erase Operation (Note 2)	Sector Erase Operation (Note 2)			0.4		sec

Notes:

- 1. Not 100% tested.
- 2. See the "Erase And Programming Performance" section for more information.

86 \$29JL064H \$71JLxxxHxx_00Al February 25, 2004

Notes:

- 1. Figure indicates last two bus cycles of a program or erase operation.
- 2. PA = program address, SA = sector address, PD = program data.
- 3. DQ7# is the complement of the data written to the device. D_{OUT} is the data written to the device.
- 4. Waveforms are for the word mode.

Figure 27. Alternate CE# Controlled Write (Erase/Program) Operation Timings

Erase And Programming Performance

Parameter		Typ (Note I)	Max (Note 2)	Unit	Comments
Sector Erase Time		0.4	5	sec	Excludes 00h programming
Chip Erase Time		56		sec	prior to erasure (Note 4)
Word Program Time		7	210	μs	
Accelerated Byte/Word Pro	Accelerated Byte/Word Program Time		120	μs	7
Accelerated Chip Programi	ming Time	10	30	sec	Excludes system level
Byte Program Time		5	150	μs	overhead (Note 5)
Chip Program Time	Byte Mode	42	126	sec	
(Note 3)	Word Mode	28	84	Sec	

Notes:

- 1. Typical program and erase times assume the following conditions: 25° C, 3.0 V V_{CC} , 100,000 cycles; checkerboard data pattern.
- 2. Under worst case conditions of 90°C, $V_{CC} = 2.7 \text{ V}$, 1,000,000 cycles.
- 3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes program faster than the maximum program times listed.
- 4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.
- 5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command. See Table 11 for further information on command definitions.
- 6. The device has a minimum cycling endurance of 100,000 cycles per sector.
- 7. Contact the local sales office for minimum cycling endurance values in specific applications and operating conditions.

Latchup Characteristics

Description	Min	Max
Input voltage with respect to V_{SS} on all pins except I/O pins (including OE# and RESET#)	-1.0 V	12.5 V
Input voltage with respect to V _{SS} on all I/O pins	-1.0 V	V _{CC} + 1.0 V
V _{CC} Current	−100 mA	+100 mA

Note: Includes all pins except V_{CC} . Test conditions: $V_{CC} = 3.0 \text{ V}$, one pin at a time.

88 S29JL064H S7I|LxxxHxx_00Al February 25, 2004

16 Mb SRAM (supplier I)

16 Megabit (IMb x 16 bit) CMOS SRAM

Functional Description

CEI#	CS2	OE#	WE#	LB#	UB#	IO _{0~7}	IO _{8~I5}	Mode	Power
Н	Χ	Χ	Х	Х	Х	High-Z	High-Z	Deselected	Standby
Х	L	Χ	Х	Х	Х	High-Z	High-Z	Deselected	Standby
Х	Χ	Х	Х	Н	Н	High-Z	High-Z	Deselected	Standby
L	Н	Н	Н	L	Х	High-Z	High-Z	Output Disabled	Active
L	Н	Н	Н	Х	L	High-Z	High-Z	Output Disabled	Active
L	Н	L	Н	L	Н	D _{out}	High-Z	Lower Byte Read	Active
L	Н	L	Н	Н	L	High-Z	D _{out}	Upper Byte Read	Active
L	Н	L	Н	L	L	D _{out}	D _{out}	Word Read	Active
L	Н	Χ	L	L	Н	D _{in}	High-Z	Lower Byte Write	Active
L	Н	Х	L	Н	L	High-Z	D _{in}	Upper Byte Write	Active
L	Н	Х	L	L	L	D _{in}	D _{in}	Word Write	Active

Note: X means don't care (must be low or high state).

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Voltage on any pin relative to V_{SS}	V_{IN}, V_{OUT}	-0.2 to V _{CC} +0.3V (Max. 3.6V)	V
Voltage on V_{CC} supply relative to V_{SS}	V _{CC}	-0.2 to 3.6V	V
Power Dissipation	P_{D}	1.0	W
Storage Temperature	T _{STG}	-85 to 150	°C
Operating Temperature	Т <u>а</u>	-40 to 85	°C

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Characteristics

Recommended DC Operating Conditions (Note I)

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	V_{CC}	2.7	3.0	3.3	V
Ground	V_{SS}	0	0	0	V
Input high voltage	V_{IH}	2.2	-	V _{CC} +0.2 (Note 2)	V
Input low voltage	V _{IL}	-0.2 (Note 3)	-	0.6	V

Notes:

- 1. $T_A = -40$ to $85^{\circ}C$, otherwise specified.
- 2. Overshoot: Vcc+2.0V in case of pulse width ≤20ns.
- 3. Undershoot: -2.0V in case of pulse width ≤20ns.
- 4. Overshoot and undershoot are sampled, not 100% tested.

Capacitance (f=IMHz, T_A=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	C_{IN}	V _{IN} =0V	-	8	pF
Input/Output capacitance	C_{IO}	V _{IO} =0V	-	10	pF

Note: Capacitance is sampled, not 100% tested

DC Operating Characteristics

Item	Symbol	Test Conditions		Min	Typ (Note)	Max	Unit
Input leakage current	I _{LI}	V_{IN} = V_{SS} to V_{CC}		-1	-	1	μΑ
Output leakage current	I _{LO}	CE1#= V_{IH} , CS2= V_{IL} or OE#= V_{IH} or WE#= V_{LB} #=UB#= V_{IH} , V_{IO} = V_{SS} to V_{CC}	/ _{IL} or	-1	-	1	μА
Average enerating current	I _{CC1}	Cycle time=1 μ s, 100% duty, I $_{IO}$ =0mA, CE1# LB# \leq 0.2V and/or UB# \leq 0.2V, CS2 \geq V $_{CC}$ -0.2V V_{IN} \leq 0.2V or V_{IN} \geq V $_{CC}$ -0.2V		-	-	5	μΑ
Average operating current	I _{CC2}	Cycle time=Min, I_{IO} =0mA, 100% duty, CE1#= V_{IL} , CS2= V_{IH} , LB#= V_{IL} and/or UB#= V_{IL} , V_{IN} = V_{IL} or V_{IH}	70ns	-	-	30	mA
Output low voltage	V _{OL}	$I_{OL} = 2.1 \text{mA}$		-	-	0.4	V
Output high voltage	V _{OH}	$I_{OH} = -1.0 mA$		2.4	-	-	V
Standby Current (CMOS)	I _{SB1}	Other input = $0-V_{CC}$ 1. CE1# $\geq V_{CC}$ -0.2V, CS2 $\geq V_{CC}$ -0.2V (CE1# controlled) 2. $0V\geq CS2\leq 0.2V$ (CS2 controlled)	olled) or	-	-5.0	25	μΑ

Note: Typical values are measured at V_{CC} =2.0V, T_A =25°C and not 100% tested.

AC Characteristics

Read/Write Charcteristics (V_{CC}=2.7-3.3V)

	Parameter List	Symbol	Min	Max	Units
	Read cycle time	t _{RC}	70	-	ns
	Address access time	t _{AA}	-	70	ns
	Chip select to output	t _{CO1} , t _{CO2}	-	70	ns
	Output enable to valid output	t _{OE}	-	35	ns
	LB#, UB# valid to data output	t _{BA}	-	70	ns
Read	Chip select to low-Z output	t _{LZ1} , t _{LZ2}	10	-	ns
Re	Output enable to low-Z output	t _{OLZ}	5	-	ns
	LB#, UB# enable to low-Z output	t _{BLZ}	10	-	ns
	Output hold from address change	t _{OH}	10	-	ns
	Chip disable to high-Z output	t _{HZ1} , t _{HZ2}	0	25	ns
	OE# disable to high-Z output	t _{OHZ}	0	25	ns
	UB#, LB# disable to high-Z output	t _{BHZ}	0	25	ns
	Write cycle time	t _{WC}	70	-	ns
	Chip select to end of write	t _{CW1} , t _{CW2}	60	-	ns
	Address set-up time	t _{AS}	0	-	ns
	Address valid to end of write	t _{AW}	60	-	ns
	Write pulse width	t _{WP}	50	-	ns
Write	Write recovery time	t _{WR}	0	-	ns
	Write to output high-Z	t _{WHZ}	0	20	ns
	Data to write time overlap	t _{DW}	30	-	ns
	Data hold from write time	t _{DH}	0	-	ns
	End write to output low-Z	t _{OW}	5	-	ns
	LB#, UB# valid to end of write	t _{BW}	60	-	ns

Data Retention Characteristics

Item	Symbol	Test Condition	Min	Тур	Max	Unit
V _{CC} for data retention	V_{DR}	CE1#≥V _{CC} -0.2V (Note 1), V _{IN} ≥0V	1.5	-	3.3	٧
Data retention current	I _{DR}	V_{CC} =1.5V, CE1# \geq V-0.2V (Note 1), $V_{IN} \geq$ 0V	-	1.0 (Note 2)	15	μΑ
Data retention set-up time	t _{SDR}	See data retention waveform	0	-	-	20
Recovery time	t _{RDR}	See uata reterition wavelonn	t _{RC}	-	-	ns

Notes:

- 1. CE1#≤VCC-0.2, CS2≤VCC-0.2V (CE1# controlled) or 0≤CS2-0.2V (CS2 controlled)
- 2. Typical values are measured at T_A =26°C and not 100% tested.

Timing Diagrams

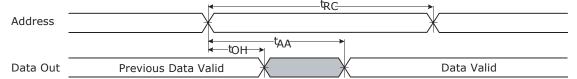
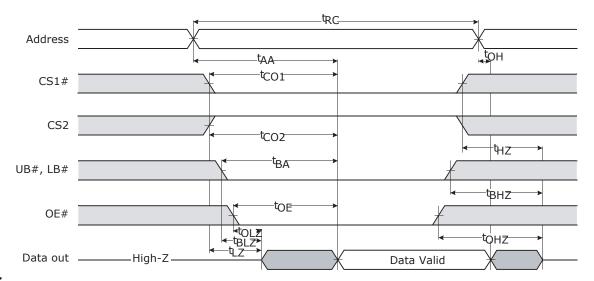



Figure 28. Timing Waveform of Read Cycle(I) (address controlled, CD#I=OE#=V_{IL}, CS2=WE#=V_{IH}, UB# and/or LB#=V_{IL})

Notes:

- 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, $t_{HZ}({\sf Max.})$ is less than $t_{LZ}({\sf Min.})$ both for a given device and from device to device interconnection.

Figure 29. Timing Waveform of Read Cycle(2) (WE#=VIH)

92

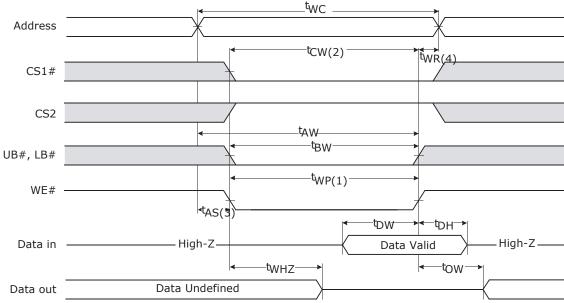


Figure 30. Timing Waveform of Write Cycle(I) (WE# controlled)

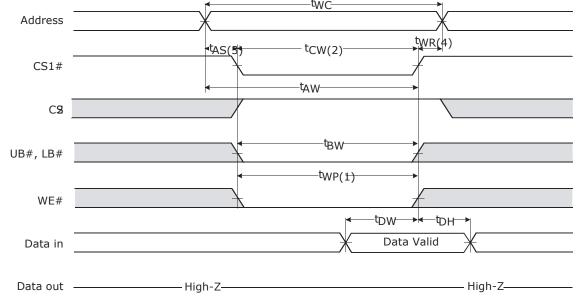
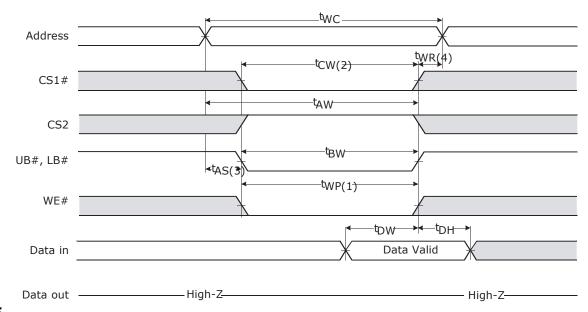



Figure 3I. Timing Waveform of Write Cycle(2) (CS# controlled)

Notes:

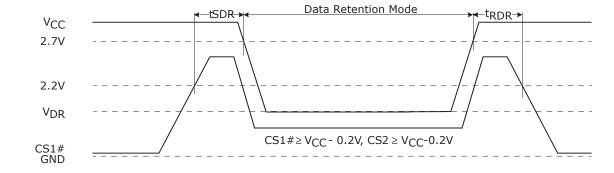

- 1. A write occurs during the overlap(t_{WP}) of low CS1# and low WE#. A write begins when CS1# goes low and WE# goes low with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte operation. A write ends at the earliest transition when CS1# goes high and WE# goes high. The t_{WP} is measured from the beginning of write to the end of write.
- 2. t_{CW} is measured from the CS1# going low to the end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the end of write to the address change. t_{WR} applied in case a write ends as CS1# or WE# going high.

Figure 32. Timing Waveform of Write Cycle(3) (UB#, LB# controlled)

94

CS1# Controlled

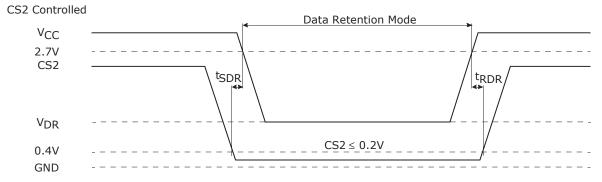


Figure 33. Data Retention Waveform

8 Mb pSRAM (supplier 2)

8 Megabit (512 K x 16 bit) Ultra-low Power Asynchronous CMOS Pseudo SRAM

Features

- Single Wide Power Supply Range
 - 2.7 to 3.6 Volts
- Very low standby current
 - 65µA at 3.0V (Max)
- Simple memory control
 - Dual Chip Enables (CE1# and CE2)
 - Byte control for independent byte operation
 - Output Enable (OE#) for memory expansion
- Very fast output enable access time
 - 35ns OE# access time
- Automatic power down to standby mode
- TTL compatible three-state output driver
- Operating Temperature
 - -40°C to +85°C
- Power Supply
 - -2.3V 3.6V
- Speed
 - 70ns @ 2.7V

General Description

The S71JL064H80—10/11/12 contains an integrated memory device containing a low power 8 Mbit SRAM built using a self-refresh DRAM array organized as 512,288 words by 16 bits. It is designed to be identical in operation and interface to standard 6T SRAMS. The device is designed for low standby and operating current and includes a power-down feature to automatically enter standby mode. The device operates with two chip enable (CE1# and CE2) controls and output enable (OE#) to allow for easy memory expansion. Byte controls (UB# and LB#) allow the upper and lower bytes to be accessed independently and can also be used to deselect the device. The S71JL064H80 is optimal for various applications where low-power is critical such as battery backup and hand-held devices. The device can operate over a very wide temperature range of -40°C to +85°C and is available in tested wafer format.

Block Diagram

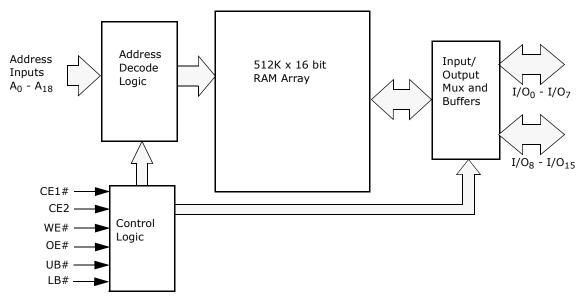


Figure 41. Functional Block Diagram

CEI#	CE2	WE#	OE#	UB#	LB#	I/O ₀ - I/O ₁₅ (Note I)	MODE	POWER
Н	Х	Х	Х	Х	X	High Z	Standby (Note 2)	Standby
Х	L	Х	Х	Х	Х	High Z	Standby (Note 2)	Standby
L	Н	Х	Х	Н	Н	High Z	Standby	Standby
L	Н	L	X (Note 3)	L (Note 1)	L (Note 1)	Data In	Write	Active
L	Н	Н	L	L (Note 1)	L (Note 1)	Data Out	Read	Active
L	Н	Н	Н	L (Note 1)	L (Note 1)	High Z	Active	Active

Table 18. Functional Description

Notes:

- 1. When UB# and LB# are in select mode (low), I/O_0 I/O_{15} are affected as shown. When LB# only is in the select mode only I/O_0 I/O_7 are affected as shown. When UB# is in the select mode only I/O_8 I/O_{15} are affected as shown.
- 2. When the device is in standby mode, control inputs (WE#, OE#, UB#, and LB#), address inputs and data input/outputs are internally isolated from any external influence and disabled from exerting any influence externally.
- 3. When WE# is invoked, the OE# input is internally disabled and has no effect on the circuit.

Absolute Maximum Ratings (See Note)

ltem	Symbol	Rating	Unit
Voltage on any pin relative to V _{SS}	V _{IN,OUT}	-0.3 to V _{CC} +0.3	V
Voltage on V_{CC} Supply Relative to V_{SS}	V _{CC}	-0.3 to 4.5	V
Operating Temperature	T _A	-40 to +85	°C

Note: Stresses greater than those listed above may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operating section of

this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Characteristics

Operating Characteristics (Over Specified Temperature Range)

ltem	Symbol	Test Conditions	Min	Typ. (Note I)	Max.	Unit
Supply Voltage	V_{CC}		2.7	3.0	3.6	V
Input High Voltage	V _{IH}		2.2		V _{CC} +0.3	V
Input Low Voltage	V _{IL}		-0.3		0.6	V
Output High Voltage	V _{OH}	I _{OH} = -1.0mA	V _{CC} -0.4			V
Output Low Voltage	V _{OL}	I _{OL} = 2.0mA			0.4	V
Input Leakage Current	I _{LI}	$V_{IN} = 0$ to V_{CC}			0.5	μА
Output Leakage Current	I _{LO}	OE# = V _{IH} or Chip Disabled			0.5	μΑ
Read/Write Operating Supply Current	I _{CC1}	V_{CC} =3.6 V, V_{IN} = V_{IH} or V_{IL} Chip Enabled, I_{OUT} = 0		3.0	5.0	mA
@ 1 μs Cycle Time (Note 2)	I _{CC2}	V_{CC} =3.3 V, V_{IN} = V_{IH} or V_{IL} Chip Enabled, I_{OUT} = 0		5.0	5.0	1101
Read/Write Operating Supply Current	I _{CC3}	V_{CC} =3.6 V, V_{IN} = V_{IH} or V_{IL} Chip Enabled, I_{OUT} = 0		12.0	25.0	mA
@ 70ns Cycle Time (Note 2)	I _{CC4}	V_{CC} =3.3 V, V_{IN} = V_{IH} or V_{IL} Chip Enabled, I_{OUT} = 0		12.0	23.0	IIIA
Maximum Standby Current (Standard Part)	I _{SB1}	$V_{IN} = V_{CC}$ or 0V Chip Disabled t_A = 85°C, V_{CC} = 3.0 V			70.0	μΑ
Maximum Standby Current (Ultra Low Power Part)	I _{SB1}	$V_{IN} = V_{CC}$ or 0V Chip Disabled $t_A = 85^{\circ}\text{C}$, $V_{CC} = 3.0 \text{ V}$			60.0	μΑ

Notes:

- 1. Typical values are measured at $V_{\rm CC} = V_{\rm CC}$ Typ., TA=25°C, and not 100% tested.
- 2. This parameter is specified with the outputs disabled to avoid external loading effects. The user must add current required to drive output capacitance expected in the actual system.

AC Characteristics

Table 19. Timing Test Conditions

Item	
Input Pulse Level	$0.1V_{CC}$ to $0.9~V_{CC}$
Input Rise and Fall Time	5ns
Input and Output Timing Reference Levels	0.5 V _{CC}
Operating Temperature	-40 °C to +85 °C

Table 20. Timings

				Speed	d Bins		
			5	55	7	' 0	
	Parameter List	Symbol	Min.	Max.	Min.	Max.	Unit
	Read Cycle Time	t _{RC}	55		70		ns
	Address Access Time	t _{AA}		55		70	ns
	Chip Enable to Valid Output	t _{CO}		55		70	ns
	Output Enable to Valid Output	t _{OE}		30		35	ns
υ	Byte Select to Valid Output	t _{LB} , t _{UB}		55		70	ns
Read Cycle	Chip Enable to Low-Z output	t _{LZ}	5		5		ns
kead	Output Enable to Low-Z Output	t _{OLZ}	5		5		ns
~	Byte Select to Low-Z Output	t _{LBZ} , t _{UBZ}	5		5		ns
	Chip Disable to High-Z Output	t _{HZ}	0	20	0	25	ns
	Output Disable to High-Z Output	t _{OHZ}	0	20	0	25	ns
	Byte Select Disable to High-Z Output	t _{LBHZ} , t _{UBHZ}	0	20	0	25	ns
	Output Hold from Address Change	t _{OH}	10		10		ns
	Write Cycle Time	t _{WC}	55		70		ns
	Chip Enable to End of Write	t _{CW}	45		55		ns
	Address Valid to End of Write	t _{AW}	45		55		ns
	Byte Select to End of Write	t _{LBW} , t _{UBW}	45		55		ns
/cle	Write Pulse Width	t _{WP}	45		55		ns
Write Cycle	Address Setup Time	t _{AS}	0		0		ns
Wri	Write Recovery Time	t _{WR}	0		0		ns
	Write to High-Z Output	t _{WHZ}		25		25	ns
	Data to Write Time Overlap	t _{DW}	40		40		ns
	Data Hold from Write Time	t _{DH}	0		0		ns
	End Write to Low-Z Output	t _{OW}	5		5		ns

Timing Diagrams

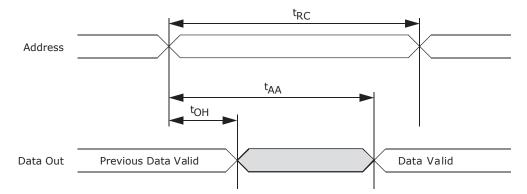


Figure 42. Timing of Read Cycle (CEI# = OE# = V_{IL} , WE# = CE2 = V_{IH})

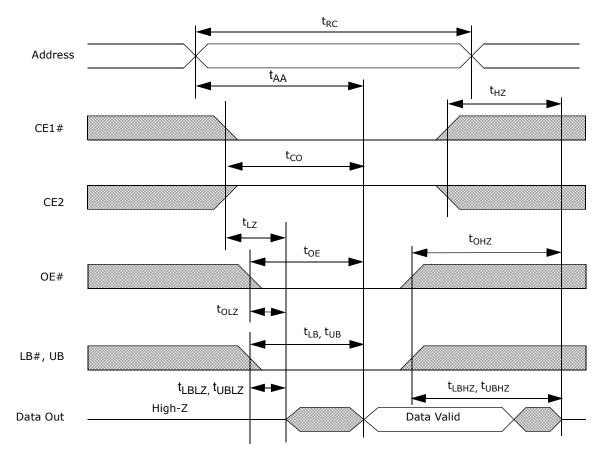


Figure 43. Timing Waveform of Read Cycle (WE# = V_{IH})

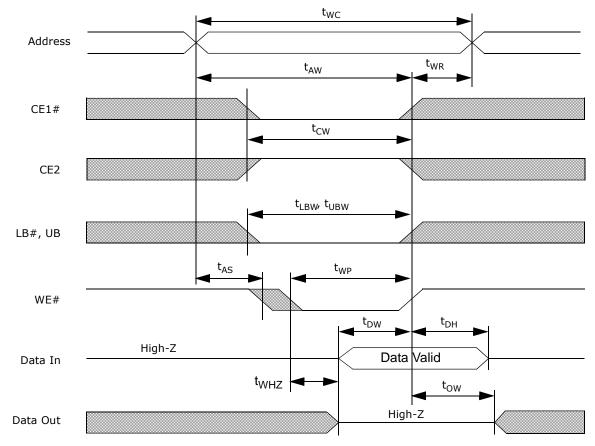


Figure 44. Timing Waveform of Write Cycle (WE# Control)

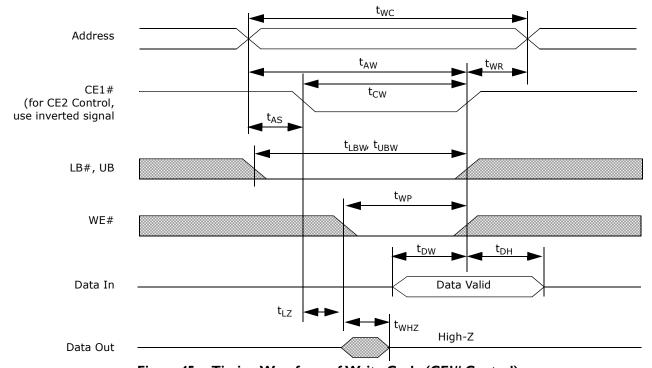


Figure 45. Timing Waveform of Write Cycle (CEI# Control)

8 Mb pSRAM (supplier 2) S7IJLxxxHxx_00Al February 25, 2004

16 Mb pSRAM (supplier 2)

16 Megabit (IMb x 16bit) Ultra-low Power Asynchronous CMOS Pseudo SRAM

Features

- Single Wide Power Supply Range
 - 2.7 to 3.6 Volts
- Very low standby current
 - 100µA at 3.0V (Max)
- Simple memory control
 - Dual Chip Enables (CE1# and CE2)
 - Byte control for independent byte operation
 - Output Enable (OE#) for memory expansion
- Very fast access time
 - 55ns address access option
 - 35ns OE# access time
- Automatic power down to standby mode
- TTL compatible three-state output driver
- Operating Temperature
 - -40°C to +85°C
- Speed
 - 70ns
 - 55 ns

General Description

The S71JL064HA0-10/11/12 contains an integrated memory device containing a low-power, 16 Mbit SRAM built using a self-refresh DRAM array organized as 1,024,576 words by 16 bits. It is designed to be identical in operation and interface to standard 6T SRAMS. The device is designed for low standby and operating current and includes a power-down feature to automatically enter standby mode. The device operates with two chip enable (CE1# and CE2) controls and output enable (OE#) to allow for easy memory expansion. Byte controls (UB# and LB#) allow the upper and lower bytes to be accessed independently and can also be used to deselect the device. The S71JL064HA0 is optimal for various applications where low-power is critical, such as battery backup and hand-held devices. The device can operate over a very wide temperature range of -40°C to +85°C and is available in tested wafer format.

Block Diagram

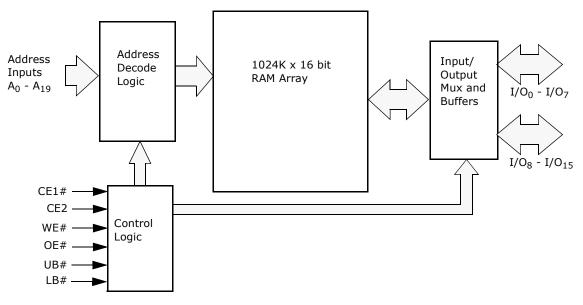


Figure 46. Functional Block Diagram

CEI#	CE2	WE#	OE#	UB#/LB#	I/O (Note I)	MODE	POWER
Н	Х	Χ	Х	Х	High Z	Standby (Note 2)	Standby
Х	L	Х	Х	Х	High Z	Standby (Note 4)	Standby
L	Н	Х	Х	Н	High Z	Standby (Note 4)	Standby
L	Н	L	Х	L (Note 3)	Data In	Write (Note 3)	Active -> Standby (Note 4)
L	Н	Н	L	L (Note 3)	Data Out	Read	Active -> Standby (Note 4)
L	Н	Н	Н	L (Note 3)	High Z	Active	Standby (Note 4)

Table 21. Functional Description

Notes:

- 1. When UB# and LB# are in select mode (low), I/O_0 I/O_{15} are affected as shown. When LB# only is in the select mode only I/O_0 IO_7 are affected as shown. When UB is in the select mode only I/O_8 I/O_{15} are affected as shown. If both UB# and LB# are in the deselect mode (high), the chip is in a standby mode regardless of the state of CE1# or CE2.#
- 2. When the device is in standby mode, control inputs (WE#, OE#, UB#, and LB), address inputs and data input/outputs are internally isolated from any external influence and disabled from exerting any influence externally.
- 3. When WE# is invoked, the OE# input is internally disabled and has no effect on the circuit.
- 4. The device will consume active power in this mode whenever addresses are changed. Data inputs are internally isolated from any external influence.

Absolute Maximum Ratings (See Note)

Item	Symbol	Rating	Unit
Voltage on any pin relative to $V_{\mbox{\scriptsize SS}}$	V _{IN,OUT}	-0.3 to V _{CC} +0.3	V
Voltage on V_{CC} Supply Relative to V_{SS}	V _{CC}	-0.3 to 4.0	V
Power Dissipation	P _D	500	mW
Storage Temperature	T _{STG}	-40 to 125	°C
Operating Temperature	T _A	-40 to +85	°C

Note: Stresses greater than those listed above may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Characteristics

Operating Characteristics (Over Specified Temperature Range)

Item	Symbol	Comments	Min	Typ. (Note I)	Max.	Unit
Supply Voltage	V _{CC}		2.7	3.0	3.6	V
Input High Voltage	V_{IH}		2.2		V _{CC} +0.3	V
Input Low Voltage	V _{IL}		-0.3		0.6	V
Output High Voltage	V _{OH}	I _{OH} = -0.2 mA	V _{CC} -0.2			V
Output Low Voltage	V _{OL}	I _{OL} = 0.2 mA			0.2	V
Input Leakage Current	I_{LI}	$V_{IN} = 0$ to V_{CC}			0.5	μΑ
Output Leakage Current	I_{LO}	$OE# = V_{IH}$ or Chip Disabled			0.5	μΑ
Read/Write Operating Supply Current @ 1 μs Cycle Time (Note 2)	I _{CC1}	$V_{CC} = V_{CC}MAX$, $V_{IN} = V_{IH}/V_{IL}$ Chip Enabled, $I_{OUT} = 0$			5	mA
Read/Write Operating Supply Current @ Min Cycle Time (Note 2)	I _{CC2}	$V_{CC} = V_{CC}MAX$, $V_{IN} = V_{IH}/V_{IL}$ Chip Enabled, $I_{OUT} = 0$			25	mA
Standby Current	I_{SB}	$V_{IN} = V_{CC}$ or $0V$ Chip Disabled $t_A = 85^{\circ}C$, $V_{CC} = 3.0V$			100.0	μΑ

Notes:

- 1. Typical values are measured at V_{CC} = V_{CC} Typ., T_A =25°C, and not 100% tested.
- 2. This parameter is specified with the outputs disabled to avoid external loading effects. The user must add current required to drive output capacitance expected in the actual system.

AC Characteristics

Timing Test Conditions

Item	
Input Pulse Level	0.1 V _{CC} to 0.9 V _{CC}
Input Rise and Fall Time	5ns
Input and Output Timing Reference Levels	0.5 V _{CC}
Operating Temperature	-40 °C to +85 °C

Timings

		5	55		70	
Item	Symbol	Min.	Max.	Min.	Max.	Unit
Read Cycle Time	t _{RC}	55		70		ns
Address Access Time	t _{AA}		55		70	ns
Chip Enable to Valid Output	t _{CO}		55		70	ns
Output Enable to Valid Output	t _{OE}		30		35	ns
Byte Select to Valid Output	t _{LB} , t _{UB}		55		70	ns
Chip Enable to Low-Z output	t _{LZ}	5		5		ns
Output Enable to Low-Z Output	t _{OLZ}	5		5		ns
Byte Select to Low-Z Output	t _{LBZ} , t _{UBZ}	5		5		ns
Chip Disable to High-Z Output	t _{HZ}	0	25	0	25	ns
Output Disable to High-Z Output	t _{OHZ}	0	25	0	25	ns
Byte Select Disable to High-Z Output	t _{LBHZ} , t _{UBHZ}	0	25	0	25	ns
Output Hold from Address Change	t _{OH}	10		10		ns
Write Cycle Time	t _{WC}	55		70		ns
Chip Enable to End of Write	t _{CW}	50		55		ns
Address Valid to End of Write	t _{AW}	50		55		ns
Byte Select to End of Write	t _{LBW} , t _{UBW}	50		55		ns
Write Pulse Width	t _{WP}	50		55		ns
Write Recovery Time	t _{WR}	0		0		ns
Write to High-Z Output	t _{WHZ}		25		25	ns
Address Setup Time	t _{AS}	0		0		ns
Data to Write Time Overlap	t _{DW}	25		25		ns
Data Hold from Write Time	t _{DH}	0		0		ns
End Write to Low-Z Output	t _{OW}	5		5		ns

Timings

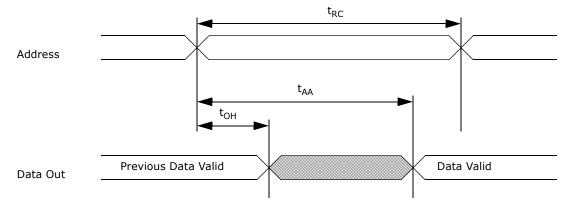


Figure 47. Timing of Read Cycle (CEI# = OE# = V_{IL} , WE# = CE2 = V_{IH})

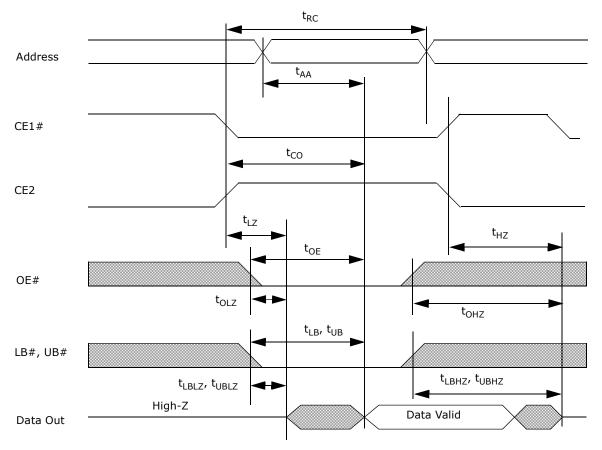


Figure 48. Timing Waveform of Read Cycle (WE# = V_{IH})

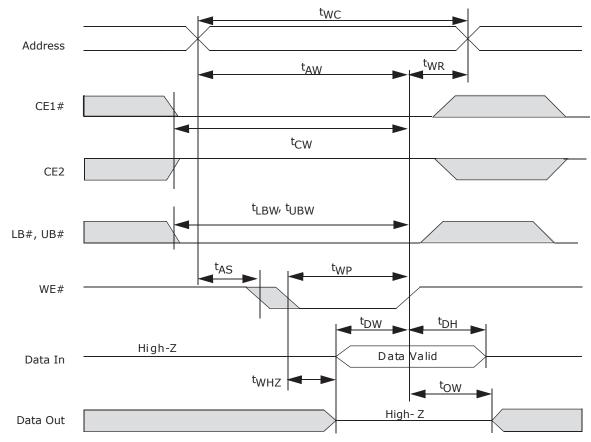


Figure 49. Timing Waveform of Write Cycle (WE# Control)

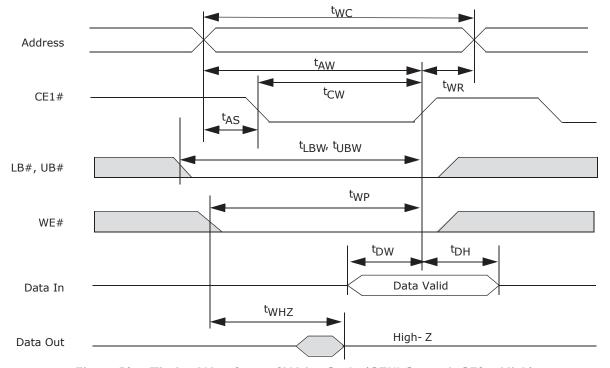


Figure 50. Timing Waveform of Write Cycle (CEI# Control, CE2 = High)

I6 Mb pSRAM (supplier 2)

114

16 Mb pSRAM (supplier 4)

16 Megabit (IM x 16) CMOS Pseudo SRAM

Features

■ Organized as 1M words by 16 bits

■ Fast Cycle Time: 70 ns ■ Standby Current: 100 μA

■ Deep power-down Current : 10 µA (Memory cell data invalid)

■ Byte data control: LB# (DQ0 - 7), UB# (DQ8 - 15)

■ Compatible with low-power SRAM

■ Single Power Supply Voltage: 3.0V±0.3V

Description

The S71JL064HA0 Model #62 contains a 16M-bit Pseudo SRAM organized as 1M words by 16 bits. It is designed with advanced CMOS technology specified RAM featuring low-power static RAM-compatible function and pin configuration. This device operates from a single power supply. Advanced circuit technology provides both high speed and low power. It is automatically placed in low-power mode when CS1# or both UB# and LB# are asserted high or CS2 is asserted low. There are three control inputs. CS1# and CS2 are used to select the device, and output enable (OE#) provides fast memory access. Data byte control pins (LB#,UB#) provide lower and upper byte access. This device is well suited to various microprocessor system applications where high speed, low power and battery backup are required.

Pin Description

A0 - A19	=	Address Inputs
DQ0 - DQ15	=	Data Inputs/Outputs
CE1#	=	Chip Enable
CE2	=	Deep Power Down
OE#	=	Output Enable
WE#	=	Write Control
LB#	=	Lower Byte Control
UB#	=	Upper Byte Control
VCC	=	Power Supply
VSS	=	Ground

Operation Mode

MODE	CEI#	CE2	OE#	WE#	LB#	UB#	DQ0 to DQ7	DQ8 to DQI5	POWER
Deselect	Н	Н	Χ	Χ	Χ	Х	High-Z	High-Z	Standby
Deselect	Х	L	Х	Χ	Χ	Х	High-Z	High-Z	Deep Power Down
Deselect	L	Н	Х	Х	Н	Н	High-Z	High-Z	Standby
Output Disabled	L	Н	Н	Н	L	Х	High-Z	High-Z	Active
Output Disabled	L	Н	Н	Н	Х	L	High-Z	High-Z	Active
Lower Byte Read	L	Н	L	Н	L	Н	D-out	High-Z	Active
Upper Byte Read	L	Н	L	Н	Н	L	High-Z	D-out	Active
Word Read	L	Н	L	Н	L	L	D-out	D-out	Active
Lower Byte Write	L	Н	Χ	L	L	Н	D-in	High-Z	Active
Upper Byte Write	L	Н	Х	L	Н	L	High-Z	D-in	Active
Word Write	L	Н	Х	L	L	L	D-in	D-in	Active

Note: X=don't care. H=logic high. L=logic low.

Absolute Maxumum Ratings (see Note)

SYMBOL	RATING	VALUE	UNIT
V _{CC}	Supply Voltage	-0.2 to +3.6	V
V_{IN}	Input Voltages	-0.2 to V _{CC} + 0.3	V
V _{IN} , V _{OUT}	Output and output Voltages	-2.0 to +3.6	V
I _{SH}	Output short circuit current	100	mA
P _D	Power Dissipation	1	W

Note: Absolute maximum DC requirements contains stress ratings only. Functional operation at the absolute maximum limits is not implied or guaranteed. Extended exposure to maximum ratings may affect device reliability.

DC Characteristics

Table 16. DC Recommended Operating Conditions

SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT
V_{DD}	Power Supply Voltage	2.7	3.0	3.3	
V_{SS}	Ground	0	-	0	V
V_{IH}	Input High Voltage	2.2	-	V _{CC} + 0.2 (Note 1)	V
V_{IL}	Input Low Voltage	-0.2 (Note 2)	-	+0.6	

Notes.

- 1. Overshoot: V_{CC} + 2.0V in case of pulse width \leq 20ns
- 2. Undershoot: -2.0V in case of pulse width ≤ 20ns
- 3. Overshoot and undershoot are sampled, not 100% tested.

Table I7. DC Characteristics ($T_A = -25^{\circ}C$ to $85^{\circ}C$, VDD = 2.6 to 3.3V)

SYMBOL	PARAMETER	TEST CONDITION	MIN	MAX	UNIT
I_{IL}	Input Leakage Current	$V_{IN} = V_{SS}$ to V_{DD}	-1	1	μΑ
I _{LO}	Output Leakage Current	$V_{IO} = V_{SS}$ to V_{DD} CE1# = V_{IH} , CE2 = V_{IL} or OE# = V_{IH} or WE# = V_{IL}	-1	1	μΑ
I _{CC1}	Operating Current @ Min Cycle Time	Cycle time = Min., 100% duty, I_{IO} = 0mA, CE1# = V_{IL} , CE2 = V_{IH} , V_{IN} = V_{IH} or V_{IL}	-	35	mA
I _{CC2}	Operating Current @ Max Cycle Time	Cycle time = 1 μ s, 100% duty I _{IO} = 0mA, CE1# \leq 0.2V, CE2 \geq V _{DD} -0.2V, V _{IN} \leq 0.2V or V _{IN} \geq V _{DD} -0.2V	-	5	mA
I _{SB1}	Standby Current (CMOS)	CE1# = V_{DD} _ 0.2V and CE2 = V_{DD} _ 0.2V, Other inputs = $V_{SS} \sim V_{CC}$	-	100	μΑ
I _{SBD}	Deep Power-down	CE2 \leq 0.2V, Other inputs = V _{SS} \sim V _{CC}		10	μΑ
V _{OL}	Output Low Voltage	$I_{OL} = 2.1 \text{mA}$	-	0.4	V
V _{OH}	Output High Voltage	$I_{OH} = -1.0$ mA	2.4	-	V

AC Characteristics

Table I8. AC Characteristics and Operating Conditions ($T_A = -25^{\circ}C$ to $85^{\circ}C$, $V_{DD} = 2.6$ to 3.3V)

			7	70	
Cycle	Symbol	Parameter	Min	Max	Unit
	t _{RC}	Read Cycle Time	70	-	ns
	t _{AA}	Address Access Time	-	70	ns
	t _{CO1}	Chip Enable (CE#1) Access Time	-	70	ns
	t _{CO2}	Chip Enable (CE2) Access Time	-	70	ns
	t _{OE}	Output Enable Access Time	-	35	ns
	t _{BA}	Data Byte Control Access Time	-	70	ns
Read	t _{LZ}	Chip Enable Low to Output in Low-Z	10	-	ns
	t _{OLZ}	Output Enable Low to Output in Low-Z	5	-	ns
	t _{BLZ}	Data Byte Control Low to Output in Low-Z	10	-	ns
	t _{HZ}	Chip Enable High to Output in High-Z	-	25	ns
	t _{OHZ}	Output Enable High to Output in High-Z	-	25	ns
	t _{BHZ}	Data Byte Control High to Output in High-Z	-	25	ns
	t _{OH}	Output Data Hold Time	10		ns

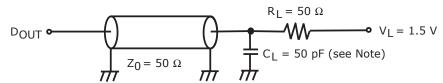


Table 18. AC Characteristics and Operating Conditions ($T_A = -25^{\circ}C$ to $85^{\circ}C$, $V_{DD} = 2.6$ to 3.3V) (Continued)

				70	
Cycle	Symbol	Parameter	Min	Max	Unit
	t _{WC}	Write Cycle Time	70	-	ns
	t _{WP}	Write Pulse Width	50	-	ns
	t _{AW}	Address Valid to End of Write	60	-	ns
	t _{CW}	Chip Enable to End of Write	60	-	ns
	t _{BW}	Data Byte Control to End of Write	60	-	ns
Write	t _{AS}	Address Set-up Time	0	-	ns
W	t _{WR}	Write Recovery Time	0	-	ns
	t _{WZH}	WE# Low to Output High-Z	-	20	ns
	t _{OW}	WE# High to Output in High-Z	5	-	ns
	t _{DW}	Data to Write Overlap	35	-	ns
	t _{DH}	Data Hold Time	0	-	ns
	t _{WEH}	WE# High Time	5	10	ns

Table 19. AC Test Conditions

Parameter	Condition		
Output load	50 pF + 1 TTL Gate		
Input pulse level	0.4 V, 2.4		
Timing measurements	0.5 × V _{CC}		
t _R , t _F	5 ns		

Note: Including scope and jig capacitance

Figure 34. AC Test Loads

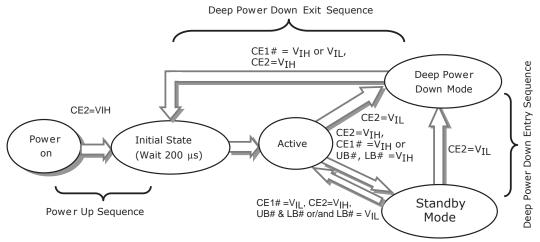
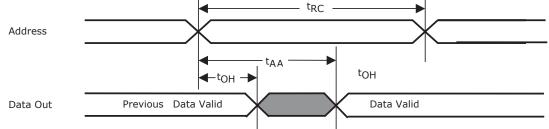
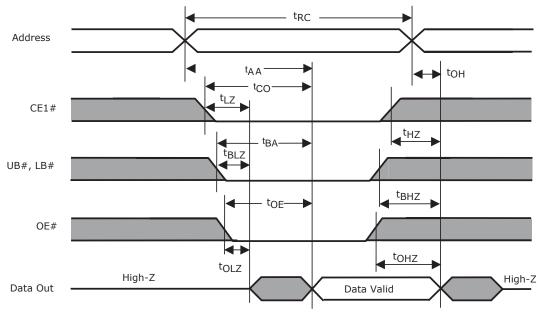



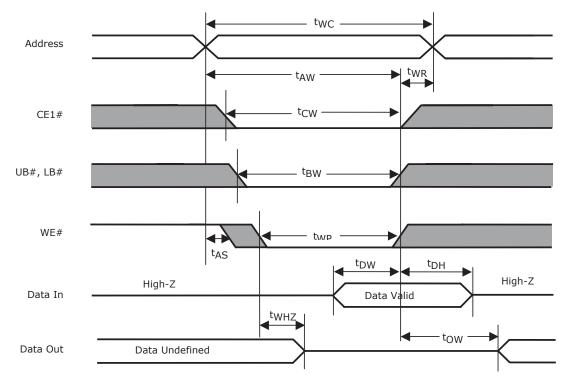
Figure 35. State Diagram

Table 20. Standby Mode Characteristics

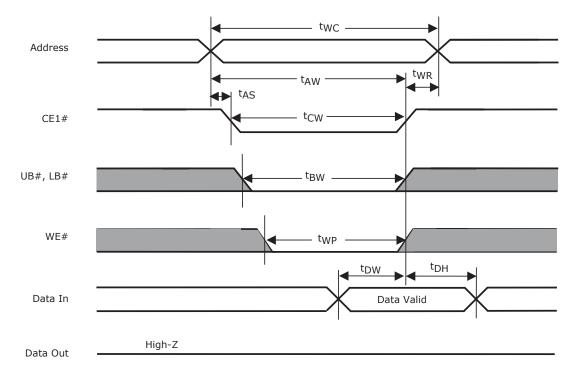
Power Mode	Memory Cell Data	Standby Current (μA)	Wait Time (µs)	
Standby	Valid	100	0	
Deep Power Down	Invalid	10	200	


Timing Diagrams

Note: $CE1\# = OE\# = V_{IL}$, $CE2 = WE\# = V_{IH}$, UB# and O' $CB\# = V_{IL}$

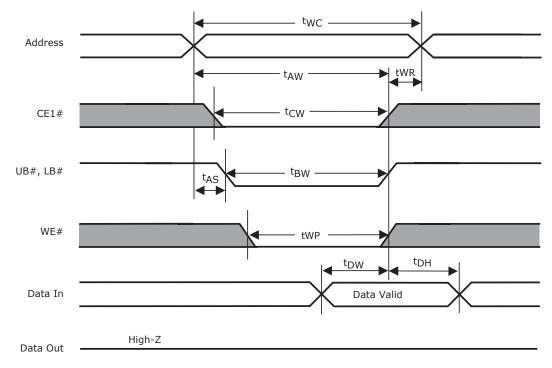

Figure 36. Read Cycle I—Addressed Controlled

Note: $CE2 = WE\# = V_{IH}$


Figure 37. Read Cycle 2—CSI# Controlled

- 1. $CE2 = V_{IH}$
- 2. $CE2 = WE\# = V_{IH}$

Figure 38. Write Cycle I—WE# Controlled



1. $CE2 = V_{IH}$

2. $CE2 = WE\# = V_{IH}$

Figure 39. Write Cycle 2—CSI# Controlled

- 1. $CE2 = V_{IH}$
- $2. \ \textit{CE2} = \textit{WE\#} = \textit{V}_{\textit{IH}}$

Figure 40. Write Cycle3—UB#, LB# Controlled

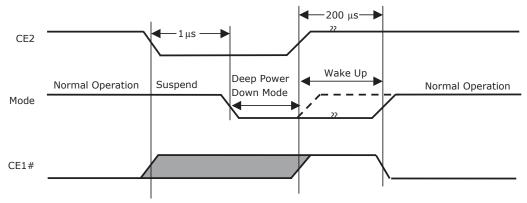


Figure 4I. Deep Power-down Mode

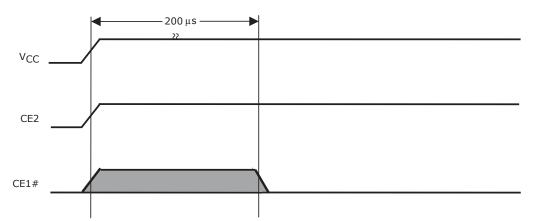
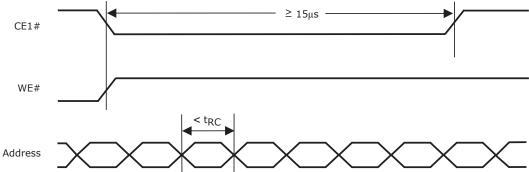



Figure 42. Power-up Mode

Note: The S71JL064HA0 Model 61 has a timing that is not supported at read operation. Data will be lost if your system has multiple invalid address signal shorter than t_{RC} during over 15 μ s at the read operation shown above.

Figure 43. Abnormal Timing

32 Mb pSRAM (Supplier 3)

32 Megabit CMOS Pseudo Static RAM

Features

- Organized as 2,097,152 words by 16 bits
- Single power supply voltage of 2.6 to 3.3 V
- Direct TTL compatibility for all inputs and outputs
- Deep power-down mode: Memory cell data invalid
- Page operation mode:
 - Page read operation by 8 words
- Logic compatible with SRAM R/W (WE#) pin
- Standby current

Standby	70 μΑ
 Deep power-down standby 	5 μΑ
Access Times:	

Access Time
CE1# Access Time
OE# Access Time
Page Access Time
30 ns

Description

The S71JL128HB0 contains a 33,554,432-bit, pseudo static random access memory (PSRAM) organized as 2,097,152 words by 16 bits. It provides high density, high speed, and low power. The device operates single power supply. The device also features SRAM-like W/R timing whereby the device is controlled by DE1#, OE#, and WE# on asynchronous. The device has the page access operation. Page size is 8 words. The device also supports deep power-down mode, realizing low-power standby.

Pin Description

A0 to A20	=	Address Inputs
A0 to A2	=	Page Address Inputs
I/O1 to I/O16	=	Data Inputs/Outputs
CE1#	=	Chip Enable Input
CE2	=	Chip select Input
WE#	=	Write Enable Input
OE#	=	Output Enable Input
LB#, UB#	=	Data Byte Control Inputs
VDD	=	Power
GND	=	Ground
NC	=	No Connection

Operation Mode

MODE	CEI#	CE2	OE#	WE#	LB#	UB#	Add	I/OI to I/O8	I/O9 to I/O16	POWER
Read (Word)	L	Н	L	Н	L	L	Χ	D _{OUT}	D _{OUT}	I_{DDO}
Read (Lower Byte)	L	Н	L	Н	L	Н	Χ	D _{OUT}	High-Z	I_{DDO}
Read (Upper Byte)	L	Н	L	Н	Н	L	Х	High-Z	D _{OUT}	I_{DDO}
Write (Word)	L	Н	Х	L	L	L	Χ	D_{IN}	D _{IN}	I_{DDO}
Write (Lower Byte)	L	Н	Х	L	L	Н	Χ	D_{IN}	Invalid	I_{DDO}
Write (Upper Byte)	L	Н	Х	L	Н	L	Χ	Invalid	D _{IN}	I_{DDO}
Outputs Disabled	L	Н	Н	Н	Χ	Χ	Χ	High-Z	High-Z	I_{DDO}
Standby	Н	Н	Х	Х	Х	Х	Х	High-Z	High-Z	I _{DDS}
Deep Power-down Standby	Н	L	Х	Х	Х	Х	Х	High-Z	High-Z	I _{DDSD}

 $\textbf{Note:} \ L = \textit{Low-level Input (V_{\textit{IL}}), H = \textit{High-level Input (V_{\textit{IH}}), X = V_{\textit{IH}} \ \textit{or V_{\textit{IL}}, High-Z = High impedance}}$

Absolute Maxumum Ratings

SYMBOL	RATING	VALUE	UNIT
V _{DD}	Power Supply Voltage	-1.0 to 3.6	V
V _{IN}	Input Voltage	-1.0 to 3.6	V
V _{OUT}	Output Voltage	-1.0 to 3.6	V
T _{opr.}	Operating Temperature	-40 to 85	°C
T _{strg} .	Storage Temperature	-55 to 150	°C
P _D	Power Dissipation	0.6	W
I _{OUT}	Short Circuit Output Current	50	mA

Note: (Stresses greater than listed under "Absolute Maximum Ratings" may cause permanent damage to the device

DC Characteristics

Table 21. DC Recommended Operating Conditions ($T_A = -40^{\circ}C$ to $85^{\circ}C$)

SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT
V_{DD}	Power Supply Voltage	2.6	2.75	3.3	
V_{IH}	Input High Voltage	2.0	-	V _{DD} + 0.3 (Note)	V
V _{IL}	Input Low Voltage	-0.3 (Note	-	0.4	

Note: $V_{IL}(Min)$ -1.0 V with 10 ns pulse width; VIH(Max) VDD+1.0 V with 10 ns pulse width

Table 22. DC Characteristics ($T_A = -40^{\circ}$ C to 85°C, VDD =	0 = 2.6 to 3.3V
---	-------------------

SYMBOL	PARAMETER	TEST CONDITION	MIN	TYP.	MAX	UNIT	
I_{IL}	Input Leakage Current	$V_{IN} = 0 V \text{ to } V_{DD}$		-1.0	-	+1.0	μΑ
I_{LO}	Output Leakage Current	Output disable, $V_{OUT} = 0 V t$	o V _{DD}	-1.0	-	+1.0	μΑ
V _{OH}	Output High Voltage	I _{OH} = - 0.5 mA			-	-	V
V _{OL}	Output Low Voltage	I _{OL} = 1.0 mA			-	0.4	V
I _{DDO1}	Operating Current	$CE1\# = V_{IL}$ $CE2 = V_{IH}, I_{OUT} = 0 \text{ mA}$ $t_{RC} = min$		-	-	40	mA
I _{DDO2}	Page Access Operating Current	$ \begin{array}{c} \text{CE1\#} = \text{V}_{\text{IL}}, \text{ CE2} = \text{V}_{\text{IH}}, \\ \text{Page add. cycling, I}_{\text{OUT}} = 0 \text{ mA} \end{array} \hspace{0.5cm} \textbf{t}_{\text{PC}} = \text{min} $		-	-	25	mA
I _{DDS}	Standby Current (MOS)	CE1# = V _{DD} - 0.2 V, CE2 = V _{DD} - 0.2 V		-	-	70	μА
I _{DDSD}	Deep Power-down Standby Current	CE2 = 0.2 V		-	-	5	μА

- 1. I_{DDO} depends on the cycle time.
- 2. I_{DDO} depends on output loading. Specified values are defined with the output open condition.

Table 23. Capacitance ($T_A = 25^{\circ}C$, f = I MHz)

Symbol	Parameter Test Condition		Max	Unit
C _{IN}	Input Capacitance	$V_{IN} = GND$	10	pF
C _{OUT}	Output Capacitance	V _{OUT} = GND	10	pF

AC Characteristics

Table 24. AC Characteristics and Operating Conditions ($T_A = -40^{\circ}\text{C}$ to 85°C, $V_{DD} = 2.6$ to 3.3V)

Symbol	Parameter	Min	Max	Unit
t _{RC}	Read Cycle Time	70	10000	ns
t _{ACC}	Address Access Time	-	70	ns
t _{CO}	Chip Enable (CE#) Access Time	_	70	ns
t _{OE}	Output Enable Access Time	-	25	ns
t _{BA}	Data Byte Control Access Time	-	25	ns
t _{COE}	Chip Enable Low to Output Active	10	-	ns
t _{OEE}	Output Enable Low to Output Active	0	-	ns
t _{BE}	Data Byte Control Low to Output Active	0	-	ns
t _{OD}	Chip Enable High to Output High-Z	-	20	ns
t _{ODO}	Output Enable High to Output High-Z	-	20	ns
t _{BD}	Data Byte Control High to Output High-Z	-	20	ns
t _{OH}	Output Data Hold Time	10	-	ns
t _{PM}	Page Mode Time	70	10000	ns
t _{PC}	Page Mode Cycle Time	30	-	ns

Table 24. AC Characteristics and Operating Conditions ($T_A = -40^{\circ}\text{C}$ to 85°C, $V_{DD} = 2.6$ to 3.3V) (Continued)

Symbol	Parameter	Min	Max	Unit
t _{AA}	Page Mode Address Access Time	-	30	ns
t _{AOH}	Page Mode Output Data Hold Time	10	-	ns
t _{WC}	Write Cycle Time	70	10000	ns
t _{WP}	Write Pulse Width	50	-	ns
t _{CW}	Chip Enable to End of Write	70	-	ns
t _{BW}	Data Byte Control to End of Write	60	-	ns
t _{AW}	Address Valid to End of Write	60	-	ns
t _{AS}	Address Set-up Time	0	-	ns
t _{WR}	Write Recovery Time	0	-	ns
t _{CEH}	Chip Enable High Pulse Width	10	-	ns
t _{WEH}	Write Enable High Pulse Width	6	-	ns
t _{ODW}	WE# Low to Output High-Z	-	20	ns
t _{OEW}	WE# High to Output Active	0	-	ns
t _{DS}	Data Set-up Time	30	-	ns
t _{DH}	Data Hold Time	0	-	ns
t _{CS}	CE2 Set-up Time	0	-	ns
t _{CH}	t _{CH} CE2 Hold Time		-	μs
t _{DPD}	CE2 Pulse Width	10	-	ms
t _{CHC}	CE2 Hold from CE1#	0	-	ns
t _{CHP}	CE2 Hold from Power On	30	-	μs

- 1. AC measurements are assumed t_R , $t_F = 5$ ns.
- 2. Parameters t_{OD} , t_{ODO} , t_{BD} and t_{ODW} define the time at which the output goes the open condition and are not output voltage reference levels.
- 3. Data cannot be retained at deep power-down stand-by mode.
- 4. If OE# is high during the write cycle, the outputs will remain at high impedance.
- 5. During the output state of I/O signals, input signals of reverse polarity must not be applied.
- 6. If CE1# or LB#/UB# goes LOW coincident with or after WE# goes LOW, the outputs will remain at high impedance.
- 7. If CE1# or LB#/UB# goes HIGH coincident with or before WE# goes HIGH, the outputs will remain at high impedance.

Table 25. AC Test Conditions

Parameter	Condition		
Output load	30 pF + 1 TTL Gate		
Input pulse level	V _{DD} – 0.2 V, 0.2 V		
Timing measurements	V _{DD} × 0.5		
Reference level	V _{DD} × 0.5		
t _R , t _F	5 ns		

Timing Diagrams

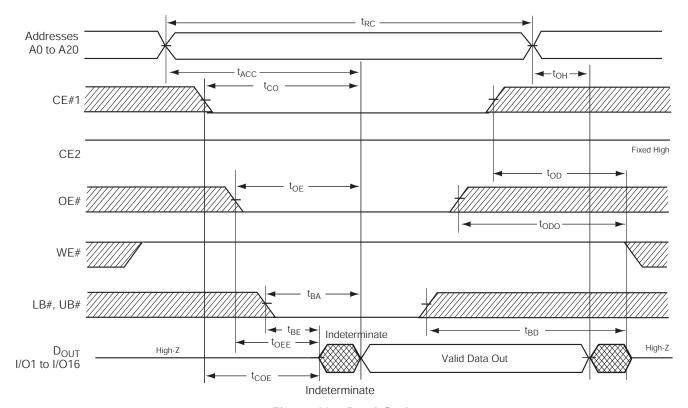


Figure 44. Read Cycle

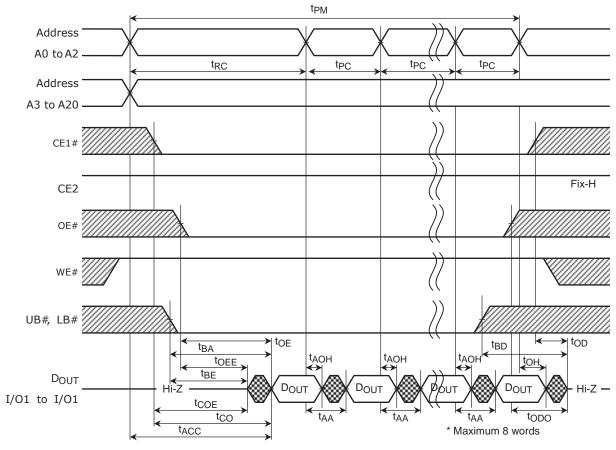
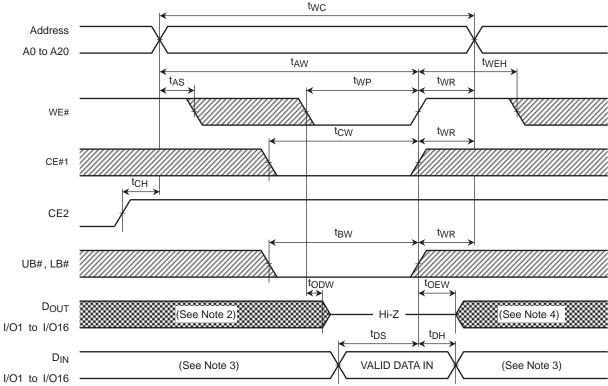
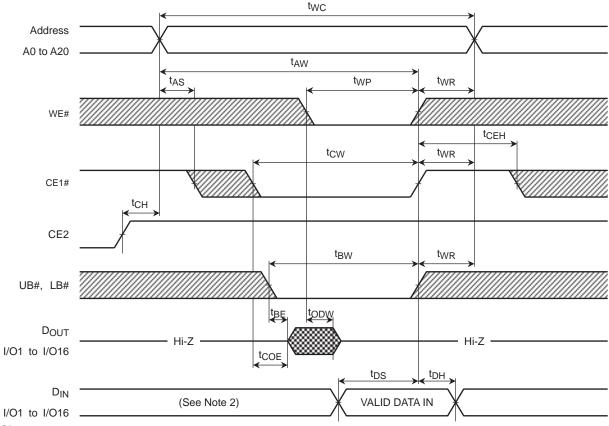



Figure 45. Page Read Cycle (8 words access)



- 1. If OE# is high during the write cycle, the outputs will remain at high impedance
- 2. If CE1# or LB#/UB# goes LOW coincident with or after WE# goes LOW, the outputs will remain at high impedance
- 3. During the output state of I/O signals, input signals of reverse polarity must not be applied
- 4. If CE1# or LB#/UB# goes HIGH coincident with or before WE# goes HIGH, the outputs will remain at high impedance

Figure 46. Write Cycle I (WE# controlled)

- 1. If OE# is high during the write cycle, the outputs will remain at high impedance
- 2. During the output state of I/O signals, input signals of reverse polarity must not be applied

Figure 47. Write Cycle 2 (CE# controlled)

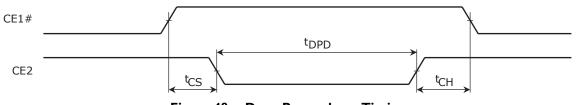
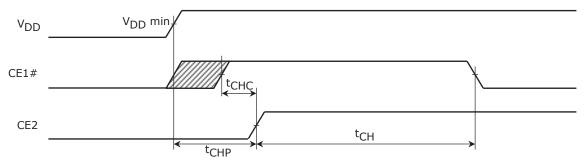
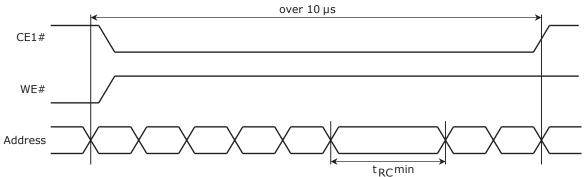
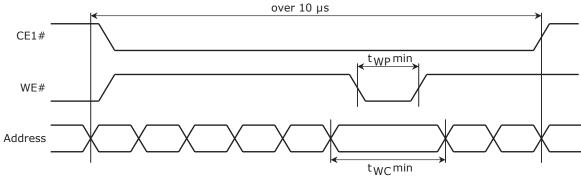


Figure 48. Deep Power-down Timing


Figure 49. Power-on Timing

Note: If multiple invalid address cycles shorter than t_{RC} min occur for a period greater than 10 μ s, at least one valid address cycle over t_{RC} min is required during that period.

Figure 50. Read Address Skew Provisions

Note: If multiple invalid address cycles shorter than t_{WC} min occur for a period greater than 10 μ s, at least one valid address cycle over t_{WC} min, in addition to t_{WP} min, is required during that period.

Figure 5I. Write Address Skew Provisions

64 Mb pSRAM (supplier 3)

64 Megabit CMOS Pseudo Static SRAM

Features

- Organized as 4,194,304 words by 16 bits
- Single power supply voltage of 2.6 to 3.3 V
- Direct TTL compatibility for all inputs and outputs
- Deep power-down mode: Memory cell data invalid
- Page operation mode:
 - Page read operation by 8 words
- Logic compatible with SRAM R/W (WE#) pin
- Standby current

 Standby 	100 μΑ
 Deep power-down standby 	5 μΑ
Access Times	

Access Times:

Access Time	70 ns
 CE1# Access Time 	70 ns
 OE# Access Time 	25 ns
 Page Access Time 	30 ns

Description

The S71JL128HC0 contains a 67,108,864-bit, pseudo static random access memory (PSRAM) organized as 4,194,304 words by 16 bits. It provides high density, high speed, and low power. The device operates on a single power supply. The device also features SRAM-like W/R timing whereby the device is controlled by DE1#, OE#, and WE# on asynchronous. The device has the page access operation. Page size is 8 words. The device also supports deep power-down mode, realizing low-power standby.

Pin Description

A0 to A21	=	Address Inputs
A0 to A2	=	Page Address Inputs
I/O1 to I/O16	=	Data Inputs/Outputs
CE1#	=	Chip Enable Input
CE2	=	Chip select Input
WE#	=	Write Enable Input
OE#	=	Output Enable Input
LB#, UB#	=	Data Byte Control Inputs
VDD	=	Power
GND	=	Ground
NC	=	No Connection

Operation Mode

MODE	CEI#	CE2	OE#	WE#	LB#	UB#	Add	I/OI to I/O8	I/O9 to I/O16	POWER
Read (Word)	L	Н	L	Н	L	L	Χ	D _{OUT}	D _{OUT}	I_{DDO}
Read (Lower Byte)	L	Н	L	Н	L	Н	Х	D _{OUT}	High-Z	I_{DDO}
Read (Upper Byte)	L	Н	L	Н	Н	L	Х	High-Z	D _{OUT}	I_{DDO}
Write (Word)	L	Η	Х	L	L	L	Χ	D_{IN}	D _{IN}	I_{DDO}
Write (Lower Byte)	L	Η	Х	L	L	Н	Χ	D_{IN}	Invalid	I_{DDO}
Write (Upper Byte)	L	Η	Х	L	Н	L	Χ	Invalid	D _{IN}	I_{DDO}
Outputs Disabled	L	Н	Н	Н	Χ	Χ	Χ	High-Z	High-Z	I_{DDO}
Standby	Н	Н	Х	Х	Х	Х	Х	High-Z	High-Z	I _{DDS}
Deep Power-down Standby	Н	L	Х	Х	Χ	Х	Х	High-Z	High-Z	I _{DDSD}

 $\textbf{Note:} \ L = \textit{Low-level Input (V_{\textit{IL}}), H = \textit{High-level Input (V_{\textit{IH}}), X = V_{\textit{IH}} \ \textit{or V_{\textit{IL}}, High-Z = High impedance}}$

Absolute Maxumum Ratings

SYMBOL	RATING	VALUE	UNIT
V _{DD}	Power Supply Voltage	-1.0 to 3.6	V
V _{IN}	Input Voltage	-1.0 to 3.6	V
V _{OUT}	Output Voltage	-1.0 to 3.6	V
T _{opr.}	Operating Temperature	-25 to 85	°C
T _{strg.}	Storage Temperature	-55 to 150	°C
P_{D}	Power Dissipation	0.6	W
I _{OUT}	Short Circuit Output Current	50	mA

Note: (Stresses greater than listed under "Absolute Maximum Ratings" may cause permanent damage to the device

DC Characteristics

Table 26. DC Recommended Operating Conditions (T_A = -25°C to 85°C)

SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT
V_{DD}	Power Supply Voltage	2.6	2.75	3.3	
V_IH	Input High Voltage	2.0	-	V _{DD} + 0.3 (Note)	V
V _{IL}	Input Low Voltage	-0.3 (Note	-	0.4	

Note: $V_{IL}(Min)$ -1.0 V with 10 ns pulse width; VIH(Max) VDD+1.0 V with 10 ns pulse width

Table 27. DC Characteristics ($T_A = -25^{\circ}C$ to $85^{\circ}C$, VDD = 2.6 to 3.3V)

SYMBOL	PARAMETER	TEST CONDITION			TYP.	MAX	UNIT
I_{IL}	Input Leakage Current	$V_{IN} = 0 V \text{ to } V_{DD}$			-	+1.0	μА
I _{LO}	Output Leakage Current	Output disable, $V_{OUT} = 0 V \text{ to } V_{DD}$			-	+1.0	mA
V _{OH}	Output High Voltage	I _{OH} = - 0.5 mA		2.4	-	-	V
V _{OL}	Output Low Voltage	I _{OL} = 1.0 mA		-	-	0.4	٧
I _{DDO1}	Operating Current	$CE1\# = V_{IL}$ $CE2 = V_{IH}, I_{OUT} = 0 \text{ mA}$	t _{RC} = min	-	-	50	mA
I _{DDO2}	Page Access Operating Current	CE1# = V_{IL} , CE2 = V_{IH} , Page add. cycling, I_{OUT} = 0 mA	t _{PC} = min	-	-	25	mA
I _{DDS}	Standby Current (MOS)	CE1# = V _{DD} - 0.2 V, CE2 = V _{DD} - 0.2 V		-	-	100	μА
I _{DDSD}	Deep Power-down Standby Current	CE2 = 0.2 V		-	-	5	μА

- 1. I_{DDO} depends on the cycle time.
- 2. I_{DDO} depends on output loading. Specified values are defined with the output open condition.

Table 28. Capacitance ($T_A = 25^{\circ}C$, f = I MHz)

SYMBOL	PARAMETER	TEST CONDITION	MAX	UNIT
C_{IN}	Input Capacitance	$V_{IN} = GND$	10	pF
C _{OUT}	Output Capacitance	V _{OUT} = GND	10	pF

AC Characteristics

Table 29. AC Characteristics and Operating Conditions ($T_A = -25^{\circ}C$ to $85^{\circ}C$, $V_{DD} = 2.6$ to 3.3V)

Symbol	Parameter	Min	Max	Unit
t _{RC}	Read Cycle Time	70	10000	ns
t _{ACC}	Address Access Time	-	70	ns
t _{CO}	Chip Enable (CE#) Access Time	-	70	ns
t _{OE}	Output Enable Access Time	-	25	ns
t _{BA}	Data Byte Control Access Time	-	25	ns
t _{COE}	Chip Enable Low to Output Active	10	-	ns
t _{OEE}	Output Enable Low to Output Active	0	-	ns
t _{BE}	Data Byte Control Low to Output Active	0	-	ns
t _{OD}	Chip Enable High to Output High-Z	-	20	ns
t _{ODO}	Output Enable High to Output High-Z	-	20	ns
t _{BD}	Data Byte Control High to Output High-Z	-	20	ns
t _{OH}	Output Data Hold Time	10	-	ns
t _{PM}	Page Mode Time	70	10000	ns
t _{PC}	Page Mode Cycle Time	30	-	ns

Table 29. AC Characteristics and Operating Conditions ($T_A = -25^{\circ}C$ to $85^{\circ}C$, $V_{DD} = 2.6$ to 3.3V) (Continued)

Symbol	Parameter	Min	Max	Unit
t _{AA}	Page Mode Address Access Time	-	30	ns
t _{AOH}	Page Mode Output Data Hold Time	10	-	ns
t _{WC}	Write Cycle Time	70	10000	ns
t _{WP}	Write Pulse Width	50	-	ns
t _{CW}	Chip Enable to End of Write	70	-	ns
t _{BW}	Data Byte Control to End of Write	60	-	ns
t _{AW}	Address Valid to End of Write	60	-	ns
t _{AS}	Address Set-up Time	0	-	ns
t _{WR}	Write Recovery Time	0	-	ns
t _{CEH}	Chip Enable High Pulse Width	10	-	ns
t _{WEH}	Write Enable High Pulse Width	15	-	ns
t _{ODW}	WE# Low to Output High-Z	-	20	ns
t _{OEW}	WE# High to Output Active	0	-	ns
t _{DS}	Data Set-up Time	30	-	ns
t _{DH}	Data Hold Time	0	-	ns
t _{CS}	CE2 Set-up Time	0	-	ns
t _{CH}	CE2 Hold Time	300	-	μs
t _{DPD}	CE2 Pulse Width	10	-	ms
t _{CHC}	CE2 Hold from CE1#	0	-	ns
t _{CHP}	CE2 Hold from Power On	30	-	μs

- 1. AC measurements are assumed t_R , $t_F = 5$ ns.
- 2. Parameters t_{OD} , t_{ODO} , t_{BD} and t_{ODW} define the time at which the output goes the open condition and are not output voltage reference levels.
- 3. Data cannot be retained at deep power-down stand-by mode.
- 4. If OE# is high during the write cycle, the outputs will remain at high impedance.
- 5. During the output state of I/O signals, input signals of reverse polarity must not be applied.
- 6. If CE1# or LB#/UB# goes LOW coincident with or after WE# goes LOW, the outputs will remain at high impedance.
- 7. If CE1# or LB#/UB# goes HIGH coincident with or before WE# goes HIGH, the outputs will remain at high impedance.

Table 30. AC Test Conditions

Parameter	Condition
Output load	30 pF + 1 TTL Gate
Input pulse level	V _{DD} – 0.2 V, 0.2 V
Timing measurements	V _{DD} × 0.5
Reference level	V _{DD} × 0.5
t _R , t _F	5 ns

Timing Diagrams

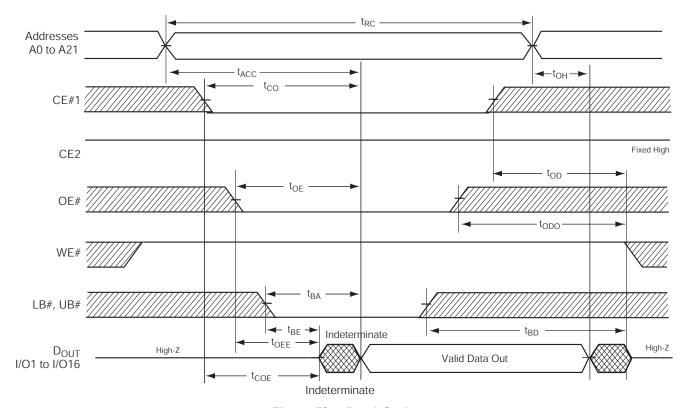


Figure 52. Read Cycle

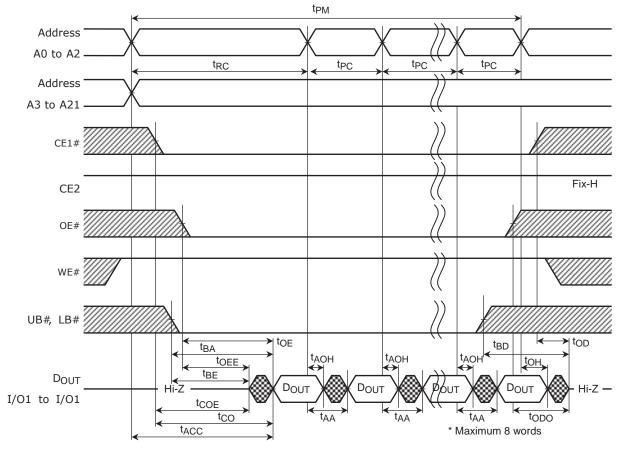
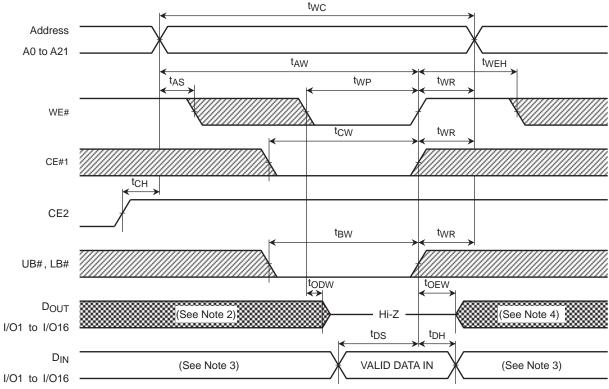
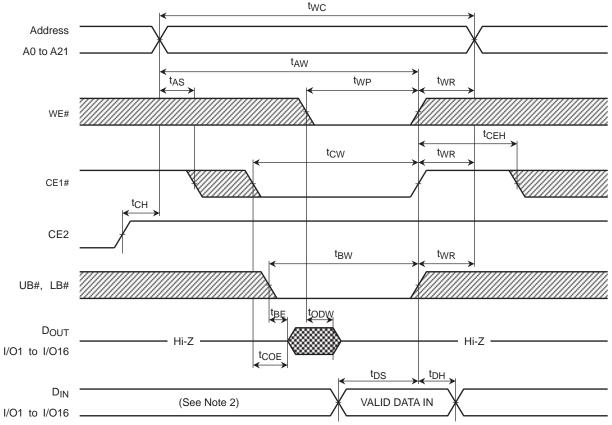



Figure 53. Page Read Cycle (8 words access)



- 1. If OE# is high during the write cycle, the outputs will remain at high impedance
- 2. If CE1# or LB#/UB# goes LOW coincident with or after WE# goes LOW, the outputs will remain at high impedance
- 3. During the output state of I/O signals, input signals of reverse polarity must not be applied
- 4. If CE1# or LB#/UB# goes HIGH coincident with or before WE# goes HIGH, the outputs will remain at high impedance

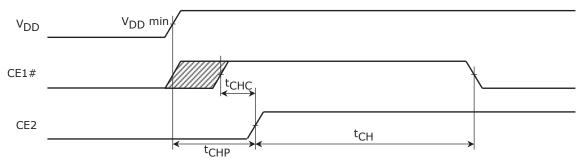
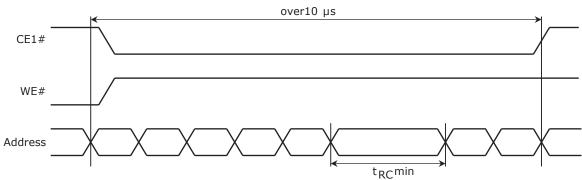
Figure 54. Write Cycle I (WE# controlled)

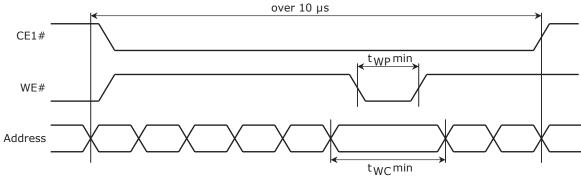
- 1. If OE# is high during the write cycle, the outputs will remain at high impedance
- 2. During the output state of I/O signals, input signals of reverse polarity must not be applied

Figure 55. Write Cycle 2 (CE# controlled)



Figure 56. Deep Power-down Timing


Figure 57. Power-on Timing

Note: If multiple invalid address cycles shorter than t_{RC} min occur for a period greater than 10 μ s, at least one valid address cycle over t_{RC} min is required during that period.

Figure 58. Read Address Skew Provisions

Note: If multiple invalid address cycles shorter than t_{WC} min occur for a period greater than 10 μ s, at least one valid address cycle over t_{WC} min, in addition to t_{WP} min, is required during that period.

Figure 59. Write Address Skew Provisions

8 Mb SRAM (supplier I)

8 Megabit (x8/x16) CMOS SRAM

Functional Description

Table 31. Word Mode

CSI#	CS#2	OE#	WE#	BYTE#	SA	LB#	UB#	DQ _{0~7}	DQ _{8~I5}	Mode	Power
Н	Χ	Χ	Х	Х	Χ	Х	Х	High-Z	High-Z	Deselected	Standby
Х	L	Χ	Х	Х	Χ	Х	Х	High-Z	High-Z	Deselected	Standby
Х	Χ	Χ	Х	Х	Χ	Н	Н	High-Z	High-Z	Deselected	Standby
L	Н	Н	Н	V_{CC}	Χ	L	Х	High-Z	High-Z	Output Disabled	Active
L	Н	Н	Н	V_{CC}	Χ	Х	L	High-Z	High-Z	Output Disabled	Active
L	Н	L	Н	V_{CC}	Χ	L	Н	D _{out}	High-Z	Lower Byte Read	Active
L	Н	L	Н	V_{CC}	Χ	Н	L	High-Z	D _{out}	Upper Byte Read	Active
L	Н	L	Н	V_{CC}	Χ	L	L	D _{out}	D _{out}	Word Read	Active
L	Н	Χ	L	V_{CC}	Χ	L	Н	D _{in}	High-Z	Lower Byte Write	Active
L	Н	Χ	L	V_{CC}	Χ	Н	L	High-Z	D _{in}	Upper Byte Write	Active
L	Н	Χ	L	V_{CC}	Χ	L	L	D _{in}	D _{in}	Word Write	Active

Note: $X = V_{IL}$ or V_{IH}

Table 32. Byte Mode

CSI#	CS#2	OE#	WE#	BYTE#	SA	LB#	UB#	DQ _{0~7}	DQ _{8~I5}	Mode	Power
Н	Х	Χ	Χ	Х	Х	Х	Х	High-Z	High-Z	Deselected	Standby
Х	L	Х	Х	Х	Х	Х	Х	High-Z	High-Z	Deselected	Standby
L	Н	Н	Н	V_{SS}	SA (Note 2)	DNU	DNU	High-Z	DNU	Output Disabled	Active
L	Н	L	Н	V_{SS}	SA (Note 2)	DNU	DNU	D _{out}	DNU	Lower Byte Read	Active
L	Н	Х	L	V_{SS}	SA (Note 2)	DNU	DNU	D _{in}	DNU	Lower Byte Write	Active

Notes:

- 1. $X = V_{IL}$ or V_{IH}
- 2. Address input for byte operation.

122

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Voltage on any pin relative to V_{SS}	V_{IN}, V_{OUT}	-0.2 to V _{CC} +0.3V (Max. 3.6V)	V
Voltage on V_{CC} supply relative to V_{SS}	V _{CC}	-0.2 to 3.6V	V
Power Dissipation	P_{D}	1.0	W
Operating Temperature	T _A	-40 to 85	°C

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Characteristics

Recommended DC Operating Conditions

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	2.7	3.0	3.3	V
Ground	V_{SS}	0	0	0	V
Input high voltage	V_{IH}	2.2	-	V _{CC} +0.2 (Note 1)	V
Input low voltage	V _{IL}	-0.2 (Note 2)	-	0.6	V

Notes:

- 1. Overshoot: Vcc+1.0V in case of pulse width $\leq 20ns$.
- 2. Undershoot: -1.0V in case of pulse width ≤20ns.
- 3. Overshoot and undershoot are sampled, not 100% tested.

Capacitance (f=IMHz, T_A=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	C _{IN}	V _{IN} =0V	-	8	pF
Input/Output capacitance	C _{IO}	V _{IO} =0V	-	10	pF

Note: Capacitance is sampled, not 100% tested

DC and Operating Characteristics

Item	Symbol	Test Conditions		Min	Тур	Max	Unit
Input leakage current	I_{LI}	V_{IN} = V_{SS} to V_{CC}		-1	-	1	mA
Output leakage current	I _{LO}	CE1#= V_{IH} , CS2= V_{IL} or OE#= V_{IH} or WE#= V_{IO} = V_{SS} to V_{CC}	-1	-	1	mA	
Average enerating current	$I_{CC1} \begin{tabular}{c} Cycle time=1 \mu s, 100\% duty, $I_{IO}=0 mA$, $CE1\# \le 0.2V$, \\ CS2 \ge V_{CC}-0.2V$, $BYTE\#=V_{SS}$ or V_{CC}, $V_{IN} \le 0.2V$ or \\ $V_{IN} \ge V_{CC}-0.2V$ \\ \begin{tabular}{c} V_{IN} \le V_{CC} > 0.2V \\ \end{tabular}$		3	mA			
Average operating current	I _{CC2}	Cycle time=Min, I_{IO} =0mA, 100% duty, CE1#= V_{IL} , CS2= V_{IH} , BYTE#= V_{SS} or V_{CC} , 70ns V_{IN} = V_{IL} or V_{IH}		-	-	22	mA
Output low voltage	V _{OL}	$I_{OL} = 2.1 \text{mA}$		ı	ı	0.4	V
Output high voltage	V _{OH}	$I_{OH} = -1.0 mA$		2.4	ı		V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-	15	mA		

8 Mb SRAM (supplier I) 57IJLxxxHxx_00Al February 25, 2004

AC Characteristics

Read/Write Charcteristics (V_{CC}=2.7-3.3V)

	Parameter List	Symbol	Min	Max	Units
	Read cycle time	t _{RC}	70	-	ns
	Address access time	t _{AA}	-	70	ns
	Chip select to output	t _{CO1} , t _{CO2}	-	70	ns
	Output enable to valid output	t _{OE}	-	35	ns
	UB#, LB# Access Time	t _{BA}	-	70	ns
Read	Chip select to low-Z output	t _{LZ1} , t _{LZ2}	10	-	ns
Re	UB#, LB# enable to low-Z output	t _{BLZ}	10	-	ns
	Output enable to low-Z output	t _{OLZ}	5	-	ns
	Chip disable to high-Z output	t _{HZ1} , t _{HZ2}	0	25	ns
	UB#, LB# disable to high-Z output	t _{BHZ}	0	25	ns
	Output disable to high-Z output	t _{OHZ}	0	25	ns
	Output hold from address change	t _{OH}	10	-	ns
	Write cycle time	t _{WC}	70	-	ns
	Chip select to end of write	t _{CW}	60	-	ns
	Address set-up time	t _{AS}	0	-	ns
	Address valid to end of write	t _{AW}	60	-	ns
Write	UB#, LB# Valid to End of Write	t _{BW}	60	-	ns
	Write pulse width	t _{WP}	50	-	ns
	Write recovery time	t _{WR}	0	-	ns
	Write to output high-Z	t _{WHZ}	0	20	ns
	Data to write time overlap	t _{DW}	30	-	ns
	Data hold from write time	t _{DH}	0	-	ns
	End write to output low-Z	t _{OW}	5	-	ns

Data Retention Characteristics

Item	Symbol	Test Condition	Min	Тур	Max	Unit
V _{CC} for data retention	V_{DR}	CS1#≥V _{CC} -0.2V	1.5	-	3.3	٧
Data retention current	I _{DR}	V _{CC} =3.0V, CS1#≥V _{CC} -0.2V	-	-	15	μΑ
Data retention set-up time	t _{SDR}	See data retention waveform	0	-	-	- ns
Recovery time	t _{RDR}		t _{RC}	-	-	

Note: CE1# \leq VCC-0.2V. CS2 \leq VCC-0.2V (CE1# controlled) or CS2 \leq 0.2V (CS2 controlled), BYTE#= V_{SS} or V_{CC}

Timing Diagrams

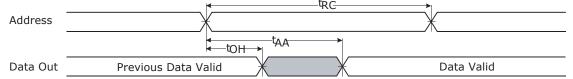
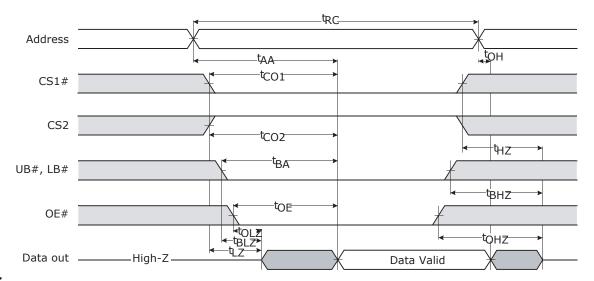



Figure 60. Timing Waveform of Read Cycle(I) (address controlled, CD#I=OE#=V_{IL}, CS2=WE#=V_{IH}, UB# and/or LB#=V_{IL})

Notes:

- 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- At any given temperature and voltage condition, t_{HZ}(Max.) is less than t_{LZ}(Min.) both for a given device and from device to device interconnection.

Figure 61. Timing Waveform of Read Cycle(2) (WE#=V_{IH}, if BYTE# is low, ignore UB#/LB# timing)

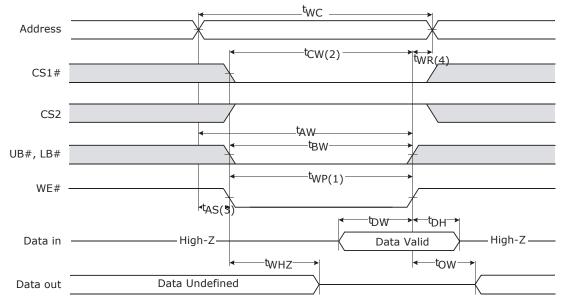


Figure 62. Timing Waveform of Write Cycle(I) (WE# controlled, if BYTE# is low, ignore UB#/LB# timing)

126 8 Mb SRAM (supplier I) S7I|LxxxHxx_00Al February 25, 2004

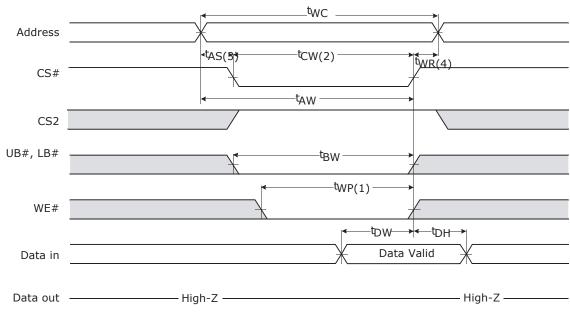
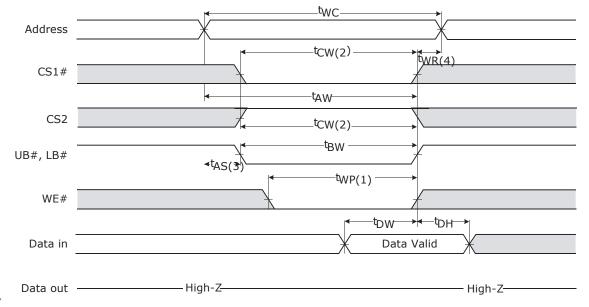



Figure 63. Timing Waveform of Write Cycle(2) (CEI# controlled, if BYTE# is low, ignore UB#/LB# timing)

- 1. A write occurs during the overlap(t_{WP}) of low CS1# and low WE#. A write begins when CS1# goes low and WE# goes low with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte operation. A write ends at the earliest transition when CS1# goes high and WE# goes high. The t_{WP} is measured from the beginning of write to the end of write.
- 2. t_{CW} is measured from the CS1# going low to the end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the end of write to the address change. t_{WR} applied in case a write ends as CS1# or WE# going high.

Figure 64. Timing Waveform of Write Cycle(3) (UB#, LB# controlled, BYTE# must be high)

Data Retention Waveforms

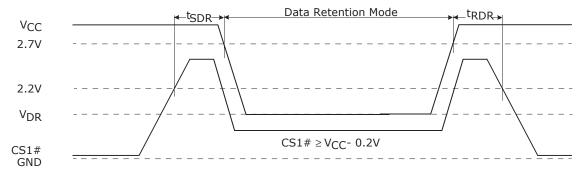


Figure 65. CEI# Controlled

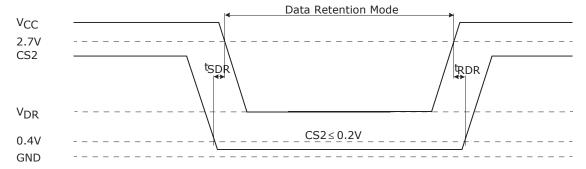


Figure 66. CS2 Controlled

8 Mb SRAM (supplier I) S7IJLxxxHxx_00Al February 25, 2004

Revision Summary

Revision A (February 23, 2004)

Initial release.

Revision A+1 (February 25, 2004)

Global

Corrected Supplier 4 Model Number to 62.

Revision A+2 (February 26, 2004)

Global

Corrected missed Supplier 4 Model Number to 62.

Trademarks and Notice

The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by FASL LLC. FASL LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided ias is is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. FASL LLC assumes no liability for any damages of any kind arising out of the use of the information in this document.

Copyright © 2003 FASL LLC. All rights reserved. Spansion, the Spansion logo, MirrorBit, combinations thereof, and ExpressFlash are trademarks of FASL LLC. Other company and product names used in this publication are for identification purposes only and may be trademarks of their respective companies.